Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural compounds block autoimmune response in diabetes, arthritis

08.11.2006
UCI study identifies how treatment can limit impact of T cells in autoimmune diseases

Natural compounds derived from a sea anemone extract and a shrub plant have been found to block the autoimmune disease response in type-1 diabetes and rheumatoid arthritis, according to University of California, Irvine researchers.

The study shows both in human and animal tests how these compounds work to deter the effect of autoimmune T-cells, white blood cells that attack the body. The goal, according to UCI researchers, is to develop new treatments from these compounds that will target these destructive T-cells while allowing other white blood cells to fight disease and infection.

Study results appear Nov. 6-10 in the Early Online Edition of the Proceedings of the National Academy of Sciences.

The study, led by UC Irvine School of Medicine researchers George Chandy and Christine Beeton, identifies how these compounds work against a type of white blood cells called effector memory T lymphocytes, which play a major role in autoimmunity. Both compounds block an ion channel in these cells that prevents the cells from proliferating and producing chemicals called cytokines that attack the body during autoimmune disease states.

"Autoimmune diseases affect millions of Americans, and any new therapies that can aid them will have great significance," Chandy said. "What's promising about this study is that we identified a protein target on the T-cells that promote autoimmune activity and the compounds that can selectively block the target and shut down the destructive cells."

White blood cells patrol the body to fight against cancer and infections, but if some of these cells turn against the body they are meant to protect, they cause autoimmune diseases. Millions of people worldwide are afflicted with disabling autoimmune disorders. Two examples of this large class of diseases are type-1 diabetes, in which white blood cells attack the pancreas, and rheumatoid arthritis, in which the joints are attacked.

In their study, the UCI researchers used modified compounds derived from the rue plant (PAP-1) and a Cuban sea anemone extract (SL5), both of which block the ion channel in the destructive T-cells.

In one set of tests using blood samples from type-1 diabetes patients and joint fluid from people with rheumatoid arthritis, the researchers found that both compounds suppressed the function of the autoimmune T-cells without affecting other T-cells that fight infections.

In another set of tests using rats, the compound from the rue shrub plant delayed the onset and reduced the incidence of disease in diabetic rats, while the venom compound stopped the progression of the disease and improved the joint function of rats with experimental autoimmune arthritis. In these rat tests, the compounds were nontoxic.

The Chandy laboratory previously discovered that SL5 compound was effective in treating rats with an experimental model of multiple sclerosis, another devastating autoimmune disease. Preclinical safety studies on PAP-1 and SL5 are under way in collaboration with AIRMID, a biotech company in the San Francisco Bay Area.

"We began our work on these natural products many years ago when we came across a report that described the beneficial effect of a scorpion sting on a patient with multiple sclerosis," Beeton said. "This work also speaks to the importance of protecting our plant and animal biodiversity -- you never know where a new medicine will come from."

Heike Wulff from University of California, Davis is a co-lead author, and other authors from UCI, UC Davis, Johns Hopkins University, Bachem Biosciences and the Benaroya Research Institute in Seattle are noted in the study text. The National Institutes of Health, American Diabetes Association, Juvenile Diabetes Research Foundation, National Multiple Sclerosis Society, Arthritis National Research Foundation and David Israelsky provided support for this study.

About type-1 diabetes and rheumatoid arthritis: The American Diabetes Association estimates that type-1 diabetes mellitus, also known as juvenile diabetes, affects one in every 400 or 600 children and adolescents in the U.S. It is characterized by a destruction of the cells that produce insulin in the pancreas. Without enough insulin, the body cannot correctly regulate levels of blood glucose, a major source of energy for the body. Type-1 diabetes can lead to serious complications such as heart disease, blindness, and nerve or kidney damage.

In rheumatoid arthritis, white blood cells induce inflammation in the joints, leading to muscle and joint aches, stiffness, and fatigue. According to the Arthritis Foundation, rheumatoid arthritis is one of the most serious and disabling types, affecting mostly women. An estimated 2.1 million people in the U.S. have rheumatoid arthritis. Some recent studies have suggested that the overall number of new cases of rheumatoid arthritis actually may be going down.

Tom Vasich | EurekAlert!
Further information:
http://www.today.uci.edu

Further reports about: Arthritis Diabetes Rheumatoid T-Cells UCI autoimmune rheumatoid arthritis type-1

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>