Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine-producing ‘plant-factories’

08.11.2006
A research team at the Consejo Superior de Investigaciones Científicas (CSIC) has discovered a new route for the transport of proteins in plant cells, a discovery that will enable the biotechnological design of plant factories.

Amongst other applications, these can be used to produce oral vaccines which, upon being ingested, will be able to immunise against diseases. Moreover, this discovery opens the door to the design of protein-manufacturing plants of great interest therapeutically and in the development of vaccine antigens.

This discovery, published in the latest issue of The Plant Cell, contributes, moreover, to refuting one of the current scientific dogmas regarding the mechanisms of protein transportation in plant cells.

The research was carried out by a team from the Institute of Agrobiotechnology and Natural Resources (a centre jointly run by the CSIC, the Public University of Navarre and the Government of Navarre), made up of Javier Pozueta, Francisco José Muñoz and Edurne Baroja. These scientists have been aided by a research team from Niigata University (Japan).

... more about:
»Chloroplast »Organ »Route »glycosylate

Specifically, the study describes a new route for the traffic of proteins from the reticular/Golgi system where there are glycosylates, towards the chloroplasts of the plant cell. Some of these glycosylated recombinant proteins have significant antigenic power of great pharmaceutical interest.

Conventional biotechnological methods enable the cells to accumulate very limited quantities of glycosylate recombinant proteins. The chloroplast is a cell organ with great capacity for storing proteins. However, it is incapable of producing glycosylate proteins.

The newly discovered route connects the cell organ where the proteins are glycosylated, the reticulum, with the chloroplasts. This discovery signifies the first step in the development of plants and algae that accumulate in their chloroplasts large amounts of glycosylate recombinant proteins with significant antigenic power.

By chance

The new route discovered by the CSIC team refutes one of the dogmas regarding this type of protein. Nevertheless, Pozueta reveals that the starting point for this research was a chance discovery. The team had been investigating the metabolism of starch, a substance that is generated in the chloroplast, when they came across an unexpected type of protein for this type of cell organ.

They found that these proteins resisted high temperatures and withstood extreme conditions, characteristics of glycosylate proteins. The discovery was unexpected because the literature written to date does not contemplate the presence of this type of protein in the chloroplast.

Once the presence of this type of protein in the chloroplast was ascertained, the scientists asked themselves if it were the cell organ itself that was glycosylating. This focus gave rise to finding a new route of traffic between the reticulum and the chloroplast. Up to now it has been argued that the endoplasmic reticulum was connected to other parts of the cell such as the Golgi apparatus and the plasmatic membrane, etcetera, but not to the chloroplast.

| alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=1078&hizk=I

Further reports about: Chloroplast Organ Route glycosylate

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>