Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's nanomachines harnessed to make drugs

08.11.2006
Many bacteria produce toxins that can threaten human health, however new research into how bacteria secrete these substances is giving clues as to how scientists could harness these processes to produce biopharmaceuticals.

Researchers at the John Innes Centre (JIC) in Norwich have used state-of-the-art technology to study a nanomachine in soil bacteria called the Tat system, which the bacteria use to secrete a range of proteins that help them digest food and compete with other microorganisms in the soil.

The scientists' latest work, published today in the respected journal PNAS, identifies which proteins are exported via the Tat system, revealing that this system is used by more proteins than previously thought. The biotechnology industry already uses bacteria to make proteins to use in products such as biological washing powder or pharmaceuticals, but some are difficult to produce using current methods. By harnessing the Tat system, the scientists hope that it will be easier to make these proteins for biotechnological and biomedical purposes.

The Tat nanomachine selects which proteins to secrete by recognising a short signal sequence attached to the end of the protein, explains Professor Tracy Palmer who has an MRC Fellowship with the University of East Anglia, " Our collaborators at the University of Pennsylvania have developed a computer program to search the bacterial genome to predict which proteins use the Tat system, and in this study we have verified their results experimentally and found a significant number of signals that are recognised by this system. The next step is to attach these signals to medically important proteins so they can be secreted by the bacteria using the Tat system."

... more about:
»nanomachine »secrete

The foundation work for this project was started as part of the Biotechnology and Biological Sciences Research Council' s (BBSRC) Exploiting Genomics Initiative; more recently Prof Palmer's team has joined forces with the "Tat Machine Project", an EU-funded consortium of researchers from across Europe studying the Tat system. In addition to using the Tat nanomachine to improve production of biopharmaceuticals, the consortium are studying the system in several different types of bacteria, including pathogenic species like E. coli O157 and Pseudomonas aeruginosa to explore Tat as a potential target for new antibiotics.

| alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: nanomachine secrete

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>