Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's nanomachines harnessed to make drugs

08.11.2006
Many bacteria produce toxins that can threaten human health, however new research into how bacteria secrete these substances is giving clues as to how scientists could harness these processes to produce biopharmaceuticals.

Researchers at the John Innes Centre (JIC) in Norwich have used state-of-the-art technology to study a nanomachine in soil bacteria called the Tat system, which the bacteria use to secrete a range of proteins that help them digest food and compete with other microorganisms in the soil.

The scientists' latest work, published today in the respected journal PNAS, identifies which proteins are exported via the Tat system, revealing that this system is used by more proteins than previously thought. The biotechnology industry already uses bacteria to make proteins to use in products such as biological washing powder or pharmaceuticals, but some are difficult to produce using current methods. By harnessing the Tat system, the scientists hope that it will be easier to make these proteins for biotechnological and biomedical purposes.

The Tat nanomachine selects which proteins to secrete by recognising a short signal sequence attached to the end of the protein, explains Professor Tracy Palmer who has an MRC Fellowship with the University of East Anglia, " Our collaborators at the University of Pennsylvania have developed a computer program to search the bacterial genome to predict which proteins use the Tat system, and in this study we have verified their results experimentally and found a significant number of signals that are recognised by this system. The next step is to attach these signals to medically important proteins so they can be secreted by the bacteria using the Tat system."

... more about:
»nanomachine »secrete

The foundation work for this project was started as part of the Biotechnology and Biological Sciences Research Council' s (BBSRC) Exploiting Genomics Initiative; more recently Prof Palmer's team has joined forces with the "Tat Machine Project", an EU-funded consortium of researchers from across Europe studying the Tat system. In addition to using the Tat nanomachine to improve production of biopharmaceuticals, the consortium are studying the system in several different types of bacteria, including pathogenic species like E. coli O157 and Pseudomonas aeruginosa to explore Tat as a potential target for new antibiotics.

| alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: nanomachine secrete

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>