Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group decisions: From compromise to leadership in pigeon homing

07.11.2006
By studying how homing pigeons decide between two attractive options--following a habitual route home and flying in the company of another homing pigeon--researchers have deepened our understanding of the forces that underlie decision-making by social animals. The findings are reported by a research group led by Dora Biro of the University of Oxford and appear in the November 7th issue of Current Biology.

Social animals have to make decisions that affect not just themselves, but everyone in the group. For example, when embarking on a journey together, individuals must agree on the route--a difficult task if group members cannot assess who are the best navigators or who is best informed about possible routes. Is a "democratic" average of everyone's opinion best? Or is it better to trust a leader? And what circumstances influence how animals decide which of these strategies to follow?

In the new study, the researchers used miniature GPS tracking devices to follow the homing flights of pairs of pigeons, where both individuals had their own, previously established preferred routes leading back to the loft. When the birds were released as a pair, and when the two preferred routes were not very different, the conflict between birds' preferences was resolved by a mutual compromise in which both birds flew by an intermediate route. When preferred routes of the two birds differed greatly, however, the compromise position was replaced by a scenario in which the preferred route of one bird--who would emerge as the "leader"--was followed by both birds for the rest of the journey.

Using a mathematical model to better understand the basis of the paired birds' navigation choices, the researchers found that both forms of decision-making could emerge from just two simple forces acting simultaneously on the pigeons' behavior: "move toward your familiar route" and "move toward your partner." In cases of small disagreements about the route, these two forces, or rules, lead to mutual compromise. However, when preferred routes are sufficiently different, behavior resembling compromise turns to behavior characterized by leadership as one bird abandons its own route to instead follow that of its partner. The outcome of the mathematical modeling therefore indicated that compromise and leadership are two outcomes of the same decision-making process.

... more about:
»compromise »individual »preferred

In another aspect of the study, the analysis of pigeon behavior showed that birds flying in pairs seem to take more efficient routes home than those flying alone, suggesting that in addition to safety in numbers, traveling in the company of others brings navigational benefits to individual group members.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: compromise individual preferred

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>