Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group decisions: From compromise to leadership in pigeon homing

07.11.2006
By studying how homing pigeons decide between two attractive options--following a habitual route home and flying in the company of another homing pigeon--researchers have deepened our understanding of the forces that underlie decision-making by social animals. The findings are reported by a research group led by Dora Biro of the University of Oxford and appear in the November 7th issue of Current Biology.

Social animals have to make decisions that affect not just themselves, but everyone in the group. For example, when embarking on a journey together, individuals must agree on the route--a difficult task if group members cannot assess who are the best navigators or who is best informed about possible routes. Is a "democratic" average of everyone's opinion best? Or is it better to trust a leader? And what circumstances influence how animals decide which of these strategies to follow?

In the new study, the researchers used miniature GPS tracking devices to follow the homing flights of pairs of pigeons, where both individuals had their own, previously established preferred routes leading back to the loft. When the birds were released as a pair, and when the two preferred routes were not very different, the conflict between birds' preferences was resolved by a mutual compromise in which both birds flew by an intermediate route. When preferred routes of the two birds differed greatly, however, the compromise position was replaced by a scenario in which the preferred route of one bird--who would emerge as the "leader"--was followed by both birds for the rest of the journey.

Using a mathematical model to better understand the basis of the paired birds' navigation choices, the researchers found that both forms of decision-making could emerge from just two simple forces acting simultaneously on the pigeons' behavior: "move toward your familiar route" and "move toward your partner." In cases of small disagreements about the route, these two forces, or rules, lead to mutual compromise. However, when preferred routes are sufficiently different, behavior resembling compromise turns to behavior characterized by leadership as one bird abandons its own route to instead follow that of its partner. The outcome of the mathematical modeling therefore indicated that compromise and leadership are two outcomes of the same decision-making process.

... more about:
»compromise »individual »preferred

In another aspect of the study, the analysis of pigeon behavior showed that birds flying in pairs seem to take more efficient routes home than those flying alone, suggesting that in addition to safety in numbers, traveling in the company of others brings navigational benefits to individual group members.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: compromise individual preferred

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>