Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Group decisions: From compromise to leadership in pigeon homing

07.11.2006
By studying how homing pigeons decide between two attractive options--following a habitual route home and flying in the company of another homing pigeon--researchers have deepened our understanding of the forces that underlie decision-making by social animals. The findings are reported by a research group led by Dora Biro of the University of Oxford and appear in the November 7th issue of Current Biology.

Social animals have to make decisions that affect not just themselves, but everyone in the group. For example, when embarking on a journey together, individuals must agree on the route--a difficult task if group members cannot assess who are the best navigators or who is best informed about possible routes. Is a "democratic" average of everyone's opinion best? Or is it better to trust a leader? And what circumstances influence how animals decide which of these strategies to follow?

In the new study, the researchers used miniature GPS tracking devices to follow the homing flights of pairs of pigeons, where both individuals had their own, previously established preferred routes leading back to the loft. When the birds were released as a pair, and when the two preferred routes were not very different, the conflict between birds' preferences was resolved by a mutual compromise in which both birds flew by an intermediate route. When preferred routes of the two birds differed greatly, however, the compromise position was replaced by a scenario in which the preferred route of one bird--who would emerge as the "leader"--was followed by both birds for the rest of the journey.

Using a mathematical model to better understand the basis of the paired birds' navigation choices, the researchers found that both forms of decision-making could emerge from just two simple forces acting simultaneously on the pigeons' behavior: "move toward your familiar route" and "move toward your partner." In cases of small disagreements about the route, these two forces, or rules, lead to mutual compromise. However, when preferred routes are sufficiently different, behavior resembling compromise turns to behavior characterized by leadership as one bird abandons its own route to instead follow that of its partner. The outcome of the mathematical modeling therefore indicated that compromise and leadership are two outcomes of the same decision-making process.

... more about:
»compromise »individual »preferred

In another aspect of the study, the analysis of pigeon behavior showed that birds flying in pairs seem to take more efficient routes home than those flying alone, suggesting that in addition to safety in numbers, traveling in the company of others brings navigational benefits to individual group members.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: compromise individual preferred

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>