Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signal protein shows promise for blocking tumor promoters in skin cells

06.11.2006
Implications for targeted gene therapy of selected cancers

A protein with the ironic name "Srcasm" can counteract the effects of tumor-promoting molecules in skin cells, according to new research by investigators at the University of Pennsylvania School of Medicine. Using animal models, the researchers discovered that Srcasm acts like a brake in epithelial cells, preventing uncontrolled cell growth caused by a family of proteins called Src kinases. This finding, published online in the Journal of Biological Chemistry, suggests a target for future gene therapy to treat skin, head, neck, colon, and breast cancers.

Investigators have known for decades that Src kinase proteins can promote tumor formation. Src kinase activity is elevated in most skin cancers and in common carcinomas, including those of the breast and colon. At the same time, levels of the signaling molecule Srcasm are typically low in tumor cells, notes senior author John Seykora, MD, PhD, Assistant Professor of Dermatology. The current findings show that Srcasm can reduce the amount of Src kinases in cells; they have also shown that increased activity of these kinases is associated with cancerous skin lesions.

Src kinase proteins act like messengers, sending signals that control cellular growth. Found just inside the cell membrane, they conduct signals from cell surface receptors to the proteins that promote growth. Src kinases can be activated during cell division or through mutation. If these proteins are too active, they promote rapid cell growth that can spin out of control. In skin cells, Src kinases and Srcasm are involved in signaling pathways that control cell growth and differentiation.

... more about:
»Fyn »Kinase »SRC »Srcasm »therapy

See Saw Action

The researchers decided to test whether Srcasm could counteract the errant effects of Src kinases. They developed strains of mice with high levels of Srcasm, which had normal skin, and other strains that over-expressed the Src-kinase called Fyn, which resulted in uncontrolled cell growth with thick, scaly, hairless plaques on the skin. These plaques, or lesions, resembled precursors of cancer. Breeding experiments with the mice indicated that high Srcasm levels counteracted the effects of Fyn.

The findings reveal that levels of Fyn and Srcasm work in a kind of see-saw – when Srcasm production is low, dangerous amounts of Fyn can build up in cells. But when Srcasm production is increased, Fyn levels go down. "The binding of Srcasm to Fyn regulates Fyn's persistence in the cell," says Seykora. "If Srcasm is low, Fyn persists longer and sends more growth-promoting signals."

Reversing Tumors

Eventually, Srcasm might play a role in targeted gene therapies for cancers that are triggered by activated Src kinases. Such a therapy would likely use an adenovirus to carry a gene that codes for Srcasm into skin cells to increase Srcasm production, as used in some other gene therapy treatments. Initially, clinicians may try this method on oral cavity and skin cancers.

Next, the Penn researchers will determine whether Srcasm can actually reverse tumor formation in skin. Seykora's team has already prepared an adenovirus and mice with the tumor-forming Src kinases expressed in their skin. Within six months, the group expects to know whether Srcasm can decrease squamous cell carcinoma formation in skin, mentions Seykora.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Fyn Kinase SRC Srcasm therapy

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>