Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered proteins associated with cystic fibrosis

06.11.2006
Researchers have found a highly unusual distribution of two proteins in the lungs and airways of people with cystic fibrosis, a discovery that could be a step in determining how the disease progresses. The proteins, first uncovered as a result of the human genome project, are thought to play a role in the body's immune system.

The discovery is preliminary, but intriguing: Finding out more about the proteins could help sort out the immune system's role in cystic fibrosis, a genetic disease that attacks the lungs and other organs and dramatically shortens life expectancy.

The study "Comparative expression of SPLUNC1, SPLUNC2 and LPLUNC1 in normal and diseased lungs," was carried out by Lynne Bingle of the University of Sheffield School of Clinical Dentistry, Sheffield, United Kingdom, and Colin Bingle, University of Sheffield Medical School, Sheffield. They will present the study at a meeting of The American Physiological Society, "Physiological Genomics and Proteomics of Lung Disease," on Nov. 3. The meeting takes place Nov. 2-5 in Fort Lauderdale.

"Our results show unique expression domains for (the proteins) within the airways and suggest that alterations in expression of these putative innate immune molecules may be associated with lung disease," the authors wrote.

Recently discovered proteins

"We've shown these proteins to be expressed in places like the upper airways, nose and mouth, where many bacteria and infectious agents are found," Bingle said. These tiny molecules are thought to be part of the first line of the body's defenses against infectious agents, Bingle said.

The human genome project localized the PLUNC (palate, lung and nasal epithelium clone) gene to chromosome 20. A genetic locus in this region directs the production of a family of at least 10 proteins. Some of the proteins are short, referred to as "SPLUNCs," while others are long, referred to as "LPLUNCs."

Researchers have found that these proteins locate in specific places in the bodies of healthy people. Because these proteins are found in different areas, researchers speculate that they may have slightly different functions and may fight different infectious agents.

Investigation with cystic fibrosis

People with cystic fibrosis have a faulty gene, which normally controls the movement of salt into and out of cells and this controls the movement of water, too, Bingle explained. In a patient with cystic fibrosis, there is too little salt and water on the outside of cells lining the airways. This means that the normally thin protective layer of mucus becomes thick and very difficult to move.

It is very difficult for the patient to cough up the thick mucus, so the airways get clogged. The trapped mucous becomes a haven for infectious agents, which leads to long-term infection, inflammation and scarring. Most patients will eventually need lung transplants in order to survive, she said.

In this study, the researchers compared the tissue of 21 cystic fibrosis patients -- all of whom had end stage disease and were scheduled for a transplant -- to healthy tissue. The healthy tissue was obtained from 10 patients undergoing surgical removal of a lung tumor. The researchers used the healthy portion of lung tissue which is usually excised along with the tumor.

The study looked at tissue samples from the lung's upper airway, just below the trachea, and from lower down in the airway, in the peripheral lung, where gas exchange takes place.

This lower region of the lung has small airways as well as the gas-exchange tissue. They used a staining technique to find SPLUNC1, SPLUNC2 and LPLUNC1.

In normal lungs:

SPLUNC1 is found predominantly in the upper airways, rarely in the smaller airways and is absent in the gas-exchange tissue of the peripheral lung.

LPLUNC1 is found in both the small airways and in the upper airways

SPLUNC2 is found in the mouth, but not in the lungs

The study found that the presence of SPLUNC1 is "massively increased in the small airways of the lungs of people with cystic fibrosis," Bingle said. "It is really difficult to find SPLUNC 1 in similar airways from the normal lung."

LPLUNC1 also increases significantly in the small airways of people with cystic fibrosis compared to normal tissue, Bingle noted. It is normal to have LPLUNC1 in this region, but people with cystic fibrosis have a much greater amount of it here.

The study found no differences in SPLUNC2 between the diseased and normal lungs. SPLUNC2 appears to be exclusively expressed in the mouth.

A step in the fight against cystic fibrosis

These findings could become a way to prevent cystic fibrosis related lung damage, most of which occurs because of the constant infections these people suffer, Bingle said. The body's immune reaction to the infection also damages the lungs, "so knowing how these immune reactions happen could help doctors prevent them or harness them to fight the infection before it becomes established," she said.

Christine Guilfoy | EurekAlert!
Further information:
http://www.the-aps.org

Further reports about: Bingle Infectious SPLUNC2 cystic cystic fibrosis fibrosis

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>