Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny worm provides model for the genetics of nicotine dependence

06.11.2006
The unassuming C. elegans nematode worm, a 1-millimeter workhorse of the genetics lab, is quite similar to human beings in its genetic susceptibility to nicotine dependence, according to University of Michigan researchers.

This finding should allow researchers to better understand how nicotine dependence works, and perhaps devise new ways to block the craving that keeps humans smoking cigarettes. Nicotine is the addictive substance in tobacco. Dependence on nicotine drives many of the most preventable causes of death in the U.S. and is a worldwide health problem.

A team led by X.Z. Shawn Xu, assistant research professor at the Life Sciences Institute and assistant professor of physiology at U-M Medical School, has completed a series of experiments which establish that C. elegans can get hooked on nicotine. Like humans, the nicotine-sensitive worms showed acute responses to nicotine exposure, as well as tolerance, sensitization and withdrawal.

"It turns out that worms exhibited behavioral responses to nicotine that parallel those observed in mammals," said Xu, whose name is pronounced Shoo. "But it is much easier to identify novel functions of a gene in worms."

... more about:
»TRP »dependence »nicotine »nicotine dependence

Xu and his team found that the genes known to underlie nicotine dependence in mammals are also present in the worms. Having established worms as a model, the Xu team then tried to identify new genes important for nicotine dependence. They found for the first time that TRP channel genes which enable cells to respond to various external stimuli are a part of the nicotine response.

In fact, when they knocked the TRP gene out of worms, the animals no longer responded to nicotine exposures. But when a new generation of worms had that missing gene replaced by a human version of the TRP gene, the worms returned to being nicotine-sensitive.

"This demonstrates that human TRP genes have the capacity to mediate nicotine dependence, suggesting that human TRP genes are important for nicotine dependence in humans," Xu said.

It also makes TRP genes a potential target for the development of drugs to treat tobacco addiction, and the worms can help in that research. C. elegans can also be used to find other unknown genes critical for nicotine dependence.

Robin Stephenson | EurekAlert!
Further information:
http://www.lsi.umich.edu

Further reports about: TRP dependence nicotine nicotine dependence

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>