Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny worm provides model for the genetics of nicotine dependence

06.11.2006
The unassuming C. elegans nematode worm, a 1-millimeter workhorse of the genetics lab, is quite similar to human beings in its genetic susceptibility to nicotine dependence, according to University of Michigan researchers.

This finding should allow researchers to better understand how nicotine dependence works, and perhaps devise new ways to block the craving that keeps humans smoking cigarettes. Nicotine is the addictive substance in tobacco. Dependence on nicotine drives many of the most preventable causes of death in the U.S. and is a worldwide health problem.

A team led by X.Z. Shawn Xu, assistant research professor at the Life Sciences Institute and assistant professor of physiology at U-M Medical School, has completed a series of experiments which establish that C. elegans can get hooked on nicotine. Like humans, the nicotine-sensitive worms showed acute responses to nicotine exposure, as well as tolerance, sensitization and withdrawal.

"It turns out that worms exhibited behavioral responses to nicotine that parallel those observed in mammals," said Xu, whose name is pronounced Shoo. "But it is much easier to identify novel functions of a gene in worms."

... more about:
»TRP »dependence »nicotine »nicotine dependence

Xu and his team found that the genes known to underlie nicotine dependence in mammals are also present in the worms. Having established worms as a model, the Xu team then tried to identify new genes important for nicotine dependence. They found for the first time that TRP channel genes which enable cells to respond to various external stimuli are a part of the nicotine response.

In fact, when they knocked the TRP gene out of worms, the animals no longer responded to nicotine exposures. But when a new generation of worms had that missing gene replaced by a human version of the TRP gene, the worms returned to being nicotine-sensitive.

"This demonstrates that human TRP genes have the capacity to mediate nicotine dependence, suggesting that human TRP genes are important for nicotine dependence in humans," Xu said.

It also makes TRP genes a potential target for the development of drugs to treat tobacco addiction, and the worms can help in that research. C. elegans can also be used to find other unknown genes critical for nicotine dependence.

Robin Stephenson | EurekAlert!
Further information:
http://www.lsi.umich.edu

Further reports about: TRP dependence nicotine nicotine dependence

More articles from Life Sciences:

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

nachricht Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates
21.02.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

International team publishes roadmap to enhance radioresistance for space colonization

21.02.2018 | Physics and Astronomy

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>