Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plant studies reveal how, where seeds store iron

Findings address worldwide iron deficiency and malnutrition

Biologists have learned where and how some plant seeds store iron, a valuable discovery for scientists working to improve the iron content of plants. Their research helps address the worldwide problem of iron deficiency and malnutrition in humans.

The team found that iron is stored in the developing vascular system of the seed of Arabidopsis, a model plant used in research. In particular, iron is stored in the vacuole, a plant cell's central storage site. The researchers also learned this localization depends on a protein called VIT1, known to transport iron into the vacuole.

"Iron deficiency is the most common human nutritional disorder in the world today, afflicting more than 3 billion people worldwide," said Mary Lou Guerinot, a biologist at Dartmouth College in N.H. and the principal investigator on the study. "Most of these people rely on plants for their dietary iron, but plants are not high in iron, and the limited availability of iron in the soil can limit plant growth. Our study suggests that iron storage in the vacuole is a promising, and, before now, largely unexplored target for increasing the iron content of seeds. Such nutrient-rich seeds would benefit both human health and agricultural productivity."

... more about:
»Seed »finding »stored »vacuole

The findings were published online in the Nov. 2, 2006, ScienceExpress, the advance publication site for the journal Science.

The researchers combined traditional mutant analysis (turning on and off the VIT1 protein) with a powerful X-ray imaging technique to create a map of where iron is localized in the seed. Guerinot was surprised by the finding because most studies on iron storage focus on another protein called ferritin.

"This project is a wonderful example of the power of using new combinations of tools--in this case, genetics and high-resolution 3-dimensional X-ray fluorescence imaging--to understand gene function," said Jane Silverthorne, a program director in NSF's Division of Biological Infrastructure, which funded the research. "The discovery that iron localizes in specific parts of a seed opens the possibility of developing seed crops such as grains and beans with increased content of this important nutrient."

The findings reveal how essential it is to look beyond ferritin to understand how iron is stored by plants. The researchers say the stored iron in the vacuole is a key source of iron for developing seedlings. Seedlings that do not express the VIT1 protein grow poorly when iron is limited.

In addition to funding from the National Science Foundation, the study was also supported by the National Institutes of Health. The imaging was carried out at the Department of Energy's National Synchrotron Light Source at Brookhaven National Laboratory.

Other authors of the paper include Sun A Kim and Tracy Punshon, both of Dartmouth, Antonio Lanzirotti of the University of Chicago, Liangtao Li and Jerry Kaplan of the University of Utah School of Medicine, José Alonso with North Carolina State University, and Joseph Ecker with the Salk Institute for Biological Studies.

Cheryl Dybas | EurekAlert!
Further information:

Further reports about: Seed finding stored vacuole

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>