Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsating gels could power tiny robots

06.11.2006
Published in Science, Pitt research could be used to develop micro-motors, drug-delivery devices

As a kid, did you ever put those little capsules into warm water and watch them grow into dinosaurs? When certain gels are put into a solution, they will not only expand, but also contract again, repeatedly, as if the little dinosaur grew and shrank over and over.

The way those gels change shape had never been theoretically examined, until now. Anna Balazs, Distinguished Professor and Robert von der Luft Professor in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh, and Victor Yashin, a postdoctoral researcher in the department, have formulated the first general model to study large-scale shape changes in responsive gels. Their results are published today in the prestigious journal Science.

Balazs and Yashin studied a unique class of polymer gels called Belousov-Zhabotinsky (BZ) gels. "They don't need any external control, you put them in a bath of solution with some reagents, and they beat spontaneously like a heart," said Balazs, who also is a researcher in Pitt's Gertrude E. and John M. Petersen Institute of NanoScience and Engineering. The oscillation occurs because the gels contain a metal catalyst linked to the backbone of their polymer chain. The movement results in beautiful patterns that can be seen by the naked eye.

... more about:
»Balazs »SHAPE »Yashin

Such gels have potential as synthetic muscles materials that can do active work. "You could make little autonomous devices for a couple hours and, when they stop running, add more reagent," said Balazs. For example, the gels could be the artificial muscle for a micro-sized robot, or they could be used to deliver pulses of drugs to a patient.

All previous calculations involving how such responsive gels reacted were only one-dimensional: They assumed that the material was spherically uniform and that waves moved along only in one direction. Those models can only predict how the material's volume will change how it will swell and shrink. To capture changes in the shape of the material requires two-dimensional calculations, which Balazs and Yashin used to create their computer model.

Their model, called the gel lattice spring model, captures large-scale, two-dimensional deformations and chemical reactions within a swollen network of polymers. The model represents gel material as a lattice of springs, like hooked-together Slinky® toys: When the material is deformed, it springs back.

When Balazs and Yashin applied their new technique to gels undergoing the BZ reaction, they observed traveling waves of local swelling that formed a rich variety of dynamic patterns and gave rise to distinctive oscillations in the gel's shape.

"This will open up a whole new field for studying morphological transformations in this soft material," said Balazs. "It is a nice computational tool for starting to investigate shape changes in gels."

In future studies, Balazs plans to take advantage of the 2D network construct to examine chemically or physically heterogeneous gels.

Karen Hoffmann | EurekAlert!
Further information:
http://www.nano.pitt.edu

Further reports about: Balazs SHAPE Yashin

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>