Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsating gels could power tiny robots

06.11.2006
Published in Science, Pitt research could be used to develop micro-motors, drug-delivery devices

As a kid, did you ever put those little capsules into warm water and watch them grow into dinosaurs? When certain gels are put into a solution, they will not only expand, but also contract again, repeatedly, as if the little dinosaur grew and shrank over and over.

The way those gels change shape had never been theoretically examined, until now. Anna Balazs, Distinguished Professor and Robert von der Luft Professor in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh, and Victor Yashin, a postdoctoral researcher in the department, have formulated the first general model to study large-scale shape changes in responsive gels. Their results are published today in the prestigious journal Science.

Balazs and Yashin studied a unique class of polymer gels called Belousov-Zhabotinsky (BZ) gels. "They don't need any external control, you put them in a bath of solution with some reagents, and they beat spontaneously like a heart," said Balazs, who also is a researcher in Pitt's Gertrude E. and John M. Petersen Institute of NanoScience and Engineering. The oscillation occurs because the gels contain a metal catalyst linked to the backbone of their polymer chain. The movement results in beautiful patterns that can be seen by the naked eye.

... more about:
»Balazs »SHAPE »Yashin

Such gels have potential as synthetic muscles materials that can do active work. "You could make little autonomous devices for a couple hours and, when they stop running, add more reagent," said Balazs. For example, the gels could be the artificial muscle for a micro-sized robot, or they could be used to deliver pulses of drugs to a patient.

All previous calculations involving how such responsive gels reacted were only one-dimensional: They assumed that the material was spherically uniform and that waves moved along only in one direction. Those models can only predict how the material's volume will change how it will swell and shrink. To capture changes in the shape of the material requires two-dimensional calculations, which Balazs and Yashin used to create their computer model.

Their model, called the gel lattice spring model, captures large-scale, two-dimensional deformations and chemical reactions within a swollen network of polymers. The model represents gel material as a lattice of springs, like hooked-together Slinky® toys: When the material is deformed, it springs back.

When Balazs and Yashin applied their new technique to gels undergoing the BZ reaction, they observed traveling waves of local swelling that formed a rich variety of dynamic patterns and gave rise to distinctive oscillations in the gel's shape.

"This will open up a whole new field for studying morphological transformations in this soft material," said Balazs. "It is a nice computational tool for starting to investigate shape changes in gels."

In future studies, Balazs plans to take advantage of the 2D network construct to examine chemically or physically heterogeneous gels.

Karen Hoffmann | EurekAlert!
Further information:
http://www.nano.pitt.edu

Further reports about: Balazs SHAPE Yashin

More articles from Life Sciences:

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>