Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to zebrafish heart regeneration uncovered

06.11.2006
When a portion of a zebrafish's heart is removed, the dynamic interplay between a mass of stem cells that forms in the wound and the protective cell layer that covers the wound spurs the regeneration of functional new heart tissue, Duke University Medical Center scientists have found.

The scientists further discovered that key growth factors facilitate the interaction between the cell mass and the protective covering, encouraging the formation of new heart muscle.

Many cell biologists believe the ability to regenerate damaged heart tissue may be present in all vertebrate species, but that for unknown reasons, mammals have "turned off" this ability over the course of evolution. Zebrafish could provide a model to help researchers find the key to unlocking this dormant regenerative capacity in mammals, and such an advance could lead to potential treatments for human hearts damaged by disease, the Duke scientists said.

"If you look in nature, there are many examples of different types of organisms, such as axolotls, newts and zebrafish, that have an elevated ability to regenerate lost or damaged tissue," said Kenneth Poss, Ph.D., senior researcher for the team, which published the findings on Nov. 3, 2006, in the journal Cell. First authors of the paper were Alexandra Lepilina, M.D., and Ashley Coon.

"Interestingly, some species have the ability to regenerate appendages, while even fairly closely related species do not," Poss added. "This leads us to believe that during the course of evolution, regeneration is something that has been lost by some species, rather than an ability that has been gained by other species. The key is to find a way to 'turn on' this regenerative ability."

The research was supported by the National Institutes of Health, the American Heart Association, the March of Dimes and the Whitehead Foundation.

Scientists previously had suspected that zebrafish regenerated their heart tissue by the direct division of existing cardiac muscle cells adjacent to the injury, Poss said.

However, Poss and colleagues found that the process more closely resembles what happens when a salamander regenerates a lost limb. In the salamander, the site of injury becomes the gathering point for a mass of undifferentiated stem, or progenitor, cells, which are immature cells with the potential to be transformed into other cell types. This mass of undifferentiated cells is known as a blastema. As the progenitor cells receive the correct biochemical cue, they turn into distinct cell types, such as bone, muscle and cartilage, to form the new limb.

Poss believes that when a portion of the heart tissue is removed from zebrafish, a blastema forms at the site of injury. However, the progenitor cells will not achieve their full regenerative potential without interactions with the layer of "epicardial" cells that forms over the blastema. The entire heart is wrapped in a membrane known as the epicardium.

By the third day after injury, the epicardial cells begin to cover the injury site, a process that takes approximately two weeks. The precursor cells within the blastema begin to differentiate into cardiac muscle cells and proliferate within the first three to four days after injury, the researchers found in their experiments.

"Within days of the injury, we find a significant increase in the expression of certain genes in the epicardial cover," Poss said. "These genes are typically expressed only during embryonic development of the cardiovascular system. The epicardial cells mobilize to cover the wound and blastema, and help provide new blood vessels, creating a protective niche where the new heart muscle can grow."

The researchers found that biochemical signaling between the blastema and the epicardium is controlled in part by proteins called fibroblast growth factors, which are involved in wound healing and embryonic development.

"When we blocked signaling by fibroblast growth factors in our zebrafish model, we found that the regeneration gets to a certain point and then stops," Poss said. "The new blood vessels show poor invasion of the newly regenerating cells, halting the formation of new heart muscle."

Poss said that a continued understanding of the processes involved in regeneration of the zebrafish heart could lead to therapies to repair human heart muscle damaged by disease or heart attack.

"Multiple types of progenitor cells have been identified within the mammalian heart, yet it displays little or no regeneration when damaged," Poss said. "By contrast, zebrafish mount a vigorous regenerative response after cardiac injury. Future studies in zebrafish could help us discover why this regenerative ability is lacking in mammals and potential ways to stimulate it."

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

Further reports about: Poss Regeneration blastema blood vessel heart muscle injury progenitor regenerate regenerative

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>