Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify a septic shock susceptibility gene

03.11.2006
In the November 15th issue of G&D, Dr. Robert Schneider and colleagues at NYU School of Medicine report that the AUF1 gene underlies susceptibility to septic shock.

Septic shock often follows a bacterial infection, and is characterized by the overwhelming release of pro-inflammatory cytokines by the body's immune system. This uncontrolled, systemic inflammatory response leads to dangerously low blood pressure and, ultimately, organ failure. One quarter to one half of sepsis patients die, making it the leading cause of hospital deaths in the US.

Dr. Schneider and colleagues demonstrate that the protein encoded by the AUF1 gene destabilizes the mRNA precursors of important pro-inflammatory cytokines. To better understand the role of AUF1 in septic shock, the scientists engineered a strain of transgenic mice deficient in the AUF1 gene, and then exposed them to bacterial endotoxin.

Dr. Schneider and colleagues observed that AUF1-deficinet mice were more sensitive to endotoxin-induced septic shock, displaying an exacerbated pro-inflammatory response and higher mortality rates. They found that AUF1 normally attenuates the immune response by limiting expression of two specific cytokines – TNFalpha and IL-1beta. In fact, treatment of AUF1-deficient mice with antibodies to neutralize TNFalpha and IL-1beta effectively combated endotoxic shock.

Further research is needed to delineate precisely how AUF1 regulates TNFalpha and IL-1beta, but Dr. Schneider is confident that "AUF1 is a key factor involved in septic shock, and its identification provides an important new target for development of agents to reduce mortality from this life-threatening condition."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: AUF1 IL-1beta TNFalpha cytokines pro-inflammatory septic susceptibility

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>