Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fish mend a broken heart

03.11.2006
New evidence to explain how a common tropical fish mends a broken heart may suggest methods for coaxing the damaged hearts of mammals to better heal, researchers report in the November 3, 2006 issue of Cell, published by Cell Press.

The researchers found that the hearts of zebrafish harbor progenitor cells that spring into action to restore wounded heart muscle. Cells from a membrane layer that surrounds the heart, called the epicardium, follow suit, invading the wounded cardiac tissue and stimulating the growth of new blood vessels.

"Zebrafish can survive pretty massive injury to the heart--the loss of about a quarter of their ventricle," said Kenneth Poss of Duke University Medical Center. The ventricle, which receives blood and then pumps it back out to the body, is one of two chambers that make up the fish heart. "This study gets at some of the important mechanistic questions about how they rebuild the heart, and some of the key factors that contribute."

In contrast to zebrafish, the cardiac damage and scarring caused by heart attacks is a major killer among humans, making "the inability to replace damaged cardiac muscle one of the most prominent regenerative failures of mammals," wrote Alexandra Lepilina and Ashley Coon, the study's first authors.

However, mammalian hearts have been found to contain rare populations of progenitor cells, they added. As in zebrafish, the hearts of adult mammals, including humans, are also housed inside an epicardium, a tissue about which little is known.

"Scientists haven't paid much attention to the epicardium in adults," Poss said. "These findings in fish should encourage more exploration of what adult epicardium can do.

"There is the potential that these cells could be utilized for therapies."

The ability to regenerate tissue is a feature shared among vertebrate species, the researchers said. However, particular animals, including certain amphibians and fish, display an "elevated regenerative spectrum, with many more tissues capable of impressive regeneration," they said. For instance, certain newts or salamanders can regenerate limbs, spinal cord, retina, brain, and heart tissue.

While progenitor cell populations have been identified within most mammalian organs, including skin, skeletal muscle, brain, and heart, these cells vary widely in frequency and the ability to regenerate damaged or lost tissue, they said. In most mammalian organs, progenitor cells can restore cells lost in the course of normal organ function or after minor injury but cannot regenerate after major damage or removal of structures.

"It is believed that the capacity for regeneration is an ancestral condition that has occasionally been lost in the course of vertebrate evolution." Poss said. "Thus, most biologists suspect that the machinery to optimize regeneration from progenitor cells is present, but lies dormant, in mammals."

In an earlier study, Poss and his colleagues found that zebrafish have a unique ability to regenerate cardiac muscle after major injury. They further suspected that illumination of the fishes' ability might offer important insights into "how heart regeneration is naturally optimized."

In the current study, they found that heart regeneration proceeds through two coordinated stages. First, a mass of undifferentiated, pre-cardiac cells form. Those progenitor cells then begin to differentiate and divide, to replace the damaged heart muscle.

In the second step, the epicardium surrounding the heart chambers "lights up" with activity as developmental genes switch on, Poss said. The epicardium expands to rapidly cover the wounded heart muscle.

A subset of those epicardial cells then alters their identity, invading the wound and providing essential new blood vessels to the growing muscle.

They further found that the two-part regeneration process is coordinated by so-called "fibroblast growth factor" (Fgf) signals. Fgf signals are known for their ability to encourage invasive cell behavior, Poss explained.

Indeed, they found, heart muscle cells produce the growth factor, while epicardial cells harbor receptors that are triggered by the signal. When the researchers experimentally blocked the Fgf signal, heart regeneration failed.

"It is tempting to speculate that the ability to mobilize epicardial cells and cultivate such a cardiogenic environment is a primary reason why zebrafish, as opposed to other laboratory models, effectively regenerate [heart muscle]," the researchers concluded. Indeed, they added, mammalian hearts typically show insufficient blood vessel growth after a heart attack.

"Experimental attempts to modify this deficiency are underway, including delivery of growth factors or bone marrow-derived cells that may promote [the formation of new blood vessels]…Success in these pursuits or by directly utilizing epicardial cells or their progenitors could prove favorable for encouraging regeneration from mammalian cardiac progenitor cells."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>