Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude announces breakthrough in eye cancer treatment

03.11.2006
Researchers use new, localized treatment to shrink retinoblastoma tumors, avoid chemo; treatment could be effective against some breast, lung, prostate and colon cancers

Scientists at St. Jude Children's Research Hospital have demonstrated in a mouse model a new, locally applied treatment for the eye cancer retinoblastoma that not only greatly reduces the size of the tumor, but does so without causing the side effects common with standard chemotherapy. The treatment also appears to be suitable for certain forms of breast, lung, prostate and colon cancer, and is simple enough for widespread use even in countries with limited resources.

A report on this work appears in the Nov. 2 issue of the journal Nature.

Retinoblastoma occurs in about 5,000 young children worldwide each year, arising from the immature retina, which is the part of the eye responsible for detecting light and color. The cancer is fatal if left untreated.

The new treatment holds promise for a simpler, more effective and less-toxic treatment for retinoblastoma that would eliminate the need for the current, complex therapy, according to senior author Michael Dyer, Ph.D., a Pew Scholar and associate member of the St. Jude Department of Developmental Neurobiology. The treatment is based on a discovery by Dyer's laboratory that overturned a widely held belief about the process of apoptosis (cell suicide) in retinoblastoma. Apoptosis is the way the body rids itself of abnormal cells that might become cancerous or cause other problems.

Until now, retinoblastoma experts thought that a mechanism called the p53 pathway triggered apoptosis in other types of cancer cells, but not in retinoblastoma. However, the St. Jude team proved not only that the p53 pathway was activated in early-stage retinoblastoma, but that excessive levels of a molecule called MDMX blocked it from triggering apoptosis in more advanced tumors. Based on this discovery, the St. Jude team used a molecule called nutlin-3 to block MDMX in retinoblastoma cells in test tube studies as well as in mouse models. The molecule was originally developed by

Roche Pharmaceuticals (Nutley, N.J.) for a similar use against a related target called MDM2 in adult cancer cells. The success in knocking out MDMX with nutlin-3 represents the first example of local delivery of a targeted chemotherapy drug for any childhood cancer, Dyer said.

Targeted therapy uses a customized drug to disable a specific molecule inside a growing cancer cell; local delivery is the placement of a drug at the site of disease, rather than systemic treatment. In systemic treatment, such as chemotherapy, a drug is infused into the body through a vein and then circulates, often causing toxic side effects that are especially challenging in children.

After demonstrating that nutlin-3 is effective when applied directly to the eye, the St. Jude team modified the treatment by combining this molecule with topotecan, a drug also being investigated in the treatment of retinoblastoma. Local delivery of this two-drug targeted treatment was even more effective, reducing tumor size significantly more than the most effective known combination of standard chemotherapy drugs.

"The findings suggest that this treatment not only could offer children with retinoblastoma more effective and less-toxic treatment," Dyer said. "It could also increase the chance that their vision can be preserved by eliminating the tumor and preventing its spread from the eye to the rest of the body."

The discovery that blocking MDMX releases the apoptosis response in retinoblastoma has important implications for certain forms of adult cancers as well. "Some forms of breast, lung, prostate and colon cancer are caused by abnormally large quantities of MDMX in the cells," Dyer explained. "So knocking out MDMX in those cancers might also dramatically reduce tumor size. And administering the drug directly to the site of the tumor could make the treatment especially effective while avoiding the toxicity caused by systemic exposure." This could mean the eventual elimination of all-body chemotherapy for certain cancers.

This work is likely to have its biggest impact on the care of children with retinoblastoma internationally, according to Dyer. Most children in the United States with retinoblastoma do not die from the disease because they benefit from early detection and advanced medical treatment. The complex treatment includes chemotherapy, radiation and laser therapy, as well as control of infections caused by treatment-related suppression of the immune system. However, most of the 5,000 children worldwide who are found to have retinoblastoma live primarily in countries with limited resources and have restricted access to medical treatment, according to Carlos Rodriguez-Galindo, M.D., an associate member of the St. Jude Oncology department.

"Today, those children do not have access to the advanced treatments available in other countries, such as the United States," Rodriguez-Galindo said, "but our new approach has the potential to make the treatment of retinoblastoma simpler and less toxic. Ideally, these treatments could be administered even in countries that cannot afford the highly complex infrastructure now required to manage children with retinoblastoma. This would mean saving many more lives and preserving more vision." Rodriguez-Galindo is a co-author of the paper.

Retinoblastoma can occur as a unilateral (one eye) or bilateral (both eyes) disease. In the case of unilateral disease, surgeons generally remove the eye that has the cancer in order to prevent the disease from spreading. However, children with bilateral retinoblastoma pose a significant challenge to physicians, who are reluctant to remove both eyes from young children, said Matthew Wilson, M.D., a surgeon in the St. Jude ophthalmology division and a co-author of the paper. In those cases, the physicians institute aggressive systemic chemotherapy to reduce the size of the tumor, followed by one of several possible therapies such as radiation or lasers to destroy the remaining cancer cells in the eye. "When successful, this therapy often saves vision," Wilson said. "Clinicians at major medical institutions generally save 70 percent of all eyes treated, even in the case of advanced disease."

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: Cancer Dyer MDMX apoptosis chemotherapy retinoblastoma systemic

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>