Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study holds promise for new way to fight AIDS

03.11.2006
First glimpse of protein structure provides key to future drug design

For years researchers have been trying to understand how a few HIV-infected patients naturally defeat a virus that otherwise overwhelms the immune system. Last year, a research team at the University of Rochester Medical Center confirmed that such patients, called long-term non-progressors, maintain higher than normal levels of the enzyme called APOBEC-3G (A3G) in their white blood cells, which function to stave off infections.

Now, the same group has teamed up with a structural biologist to provide the first look at the A3G structure. Such information represents an early step toward the design of a new class of drugs that could afford to all the same natural protection enjoyed by few, according to a study published today in The Journal of Biological Chemistry.

Researchers believe that A3G works by mutating or "editing" the HIV genetic code every time the virus copies itself. Editing introduces errors until the virus can no longer reproduce. At the same time, HIV has also evolved to counter A3G with its own defense protein, the viral infectivity factor (Vif), which holds firmly to A3G and tricks the white blood cell into destroying it. The results of the current study suggest how the physical form of A3G leads to its role in the immune system, and what parts of it may need to be protected so that it can continue to protect the body.

... more about:
»A3G »Aids »DNA »HIV »chains

"Keeping A3G in action represents a new way to attack HIV," said Joseph E. Wedekind, Ph.D., associate professor in the Department of Biochemistry and Biophysics at the University of Rochester Medical Center. Wedekind, along with Harold C. Smith, Ph.D., professor in the same department, led the study. "This first, rough glimpse of A3G's physical structure gives us a map to follow in the search for a new class of AIDS treatments," Wedekind said.

Study Details

For two decades, Smith and his team have worked to determine how "editing enzymes" like A3G make necessary changes to human genetic material. As the human immune system evolved, it recognized the ability of these enzymes to cause rapid genetic change and unleashed them on viral DNA. Last September, Smith's laboratory published work in the Journal of Virology that found higher levels of A3G closely correspond to lower HIV viral levels. After confirming that the A3G plays a key role in the body's fight with AIDS, Smith sought out Wedekind for a collaboration to determine its structure.

Wedekind is an expert in structural biology, the branch of molecular biology concerned with the study of the molecular shape and properties of proteins and nucleic acids, the molecules that make up the body's structures and carry out its life functions. Improved understanding of both protein and nucleic acid architecture has revolutionized medicine in recent years and has contributed to the design of current leading AIDS drugs. In seeking to determine the structure of A3G, however, the team was unable to use standard methods to start.

For instance, X-ray crystallography, Wedekind's area of expertise since 1989, involves aiming a high-energy X-ray beam at a sample of protein or nucleic acid that has been crystallized to form a repeating lattice of the molecule. The beams reflect off the atoms within a crystal, a camera records the reflected pattern and the data are reconstructed into a 3-D electron map by computers. The technique gives high-resolution images of the positions of atoms within a molecule, but only if researchers can first crystallize the molecule of interest. The team is making progress on crystallizing A3G, but wanted complementary, structural information in the meantime.

To achieve immediate results, the researchers elicited the help of Richard Gillilan, Ph.D., staff scientist at the Cornell High-Energy Synchrotron Source (CHESS) in Ithaca, N.Y., and second author on the JBC manuscript. Gillian has expertise in an imaging method called small-angle X-ray scattering (SAXS), which does not require the sample analyzed to be crystalline. While less detailed than crystallography, SAXS provides the general shape of a molecule, the spatial relationship of its parts to one another and hints about the function of each part.

Implications of Shape

Within infected human cells, viral DNA chains must temporarily unzip their two attached chains into single strands to be read and copied, and they must be copied if the virus is to infect more cells. Past work had established that A3G edits single strands of HIV DNA exposed while the virus copies itself. The newly determined structure of A3G suggests how it is able to crawl down HIV DNA chains, introducing mistakes wherever the chains are unzipped and skipping over zipped-up, double stranded regions. Researchers now believe A3G is capable of this because its structure is surprisingly different from other enzymes in its class.

The study also confirmed that A3G has two forms -- one that actively disrupts viral reproduction by editing as a free protein, and another in which the enzyme is inactive due to the presence of mRNA. The new SAXS results show what both forms look like, and suggest new ways in which HIV or the cell itself may turn off A3G.

HIV, along with deploying Vif, may also create a surplus of molecules that force A3G into its inactive form, researchers said. The theory is that HIV infection disrupts the normal process of making proteins, creating a surplus of free messenger RNAs that force A3G to become inactive. Messenger RNAs, copies of DNA that serve as a templates for the building of proteins, thus, may be natural regulators of whether A3G remains active or not. Preventing this mRNA interaction with A3G may represent yet another new avenue of attack on HIV.

"We are the first group to be able to say 'here are the parts of the molecule that need to be protected to keep A3G active in its age-old, ongoing war against viruses" Smith said. "We believe this work will lead to the development of a new treatments that enable patients to better harness their own natural defense mechanisms."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

Further reports about: A3G Aids DNA HIV chains

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>