Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study holds promise for new way to fight AIDS

03.11.2006
First glimpse of protein structure provides key to future drug design

For years researchers have been trying to understand how a few HIV-infected patients naturally defeat a virus that otherwise overwhelms the immune system. Last year, a research team at the University of Rochester Medical Center confirmed that such patients, called long-term non-progressors, maintain higher than normal levels of the enzyme called APOBEC-3G (A3G) in their white blood cells, which function to stave off infections.

Now, the same group has teamed up with a structural biologist to provide the first look at the A3G structure. Such information represents an early step toward the design of a new class of drugs that could afford to all the same natural protection enjoyed by few, according to a study published today in The Journal of Biological Chemistry.

Researchers believe that A3G works by mutating or "editing" the HIV genetic code every time the virus copies itself. Editing introduces errors until the virus can no longer reproduce. At the same time, HIV has also evolved to counter A3G with its own defense protein, the viral infectivity factor (Vif), which holds firmly to A3G and tricks the white blood cell into destroying it. The results of the current study suggest how the physical form of A3G leads to its role in the immune system, and what parts of it may need to be protected so that it can continue to protect the body.

... more about:
»A3G »Aids »DNA »HIV »chains

"Keeping A3G in action represents a new way to attack HIV," said Joseph E. Wedekind, Ph.D., associate professor in the Department of Biochemistry and Biophysics at the University of Rochester Medical Center. Wedekind, along with Harold C. Smith, Ph.D., professor in the same department, led the study. "This first, rough glimpse of A3G's physical structure gives us a map to follow in the search for a new class of AIDS treatments," Wedekind said.

Study Details

For two decades, Smith and his team have worked to determine how "editing enzymes" like A3G make necessary changes to human genetic material. As the human immune system evolved, it recognized the ability of these enzymes to cause rapid genetic change and unleashed them on viral DNA. Last September, Smith's laboratory published work in the Journal of Virology that found higher levels of A3G closely correspond to lower HIV viral levels. After confirming that the A3G plays a key role in the body's fight with AIDS, Smith sought out Wedekind for a collaboration to determine its structure.

Wedekind is an expert in structural biology, the branch of molecular biology concerned with the study of the molecular shape and properties of proteins and nucleic acids, the molecules that make up the body's structures and carry out its life functions. Improved understanding of both protein and nucleic acid architecture has revolutionized medicine in recent years and has contributed to the design of current leading AIDS drugs. In seeking to determine the structure of A3G, however, the team was unable to use standard methods to start.

For instance, X-ray crystallography, Wedekind's area of expertise since 1989, involves aiming a high-energy X-ray beam at a sample of protein or nucleic acid that has been crystallized to form a repeating lattice of the molecule. The beams reflect off the atoms within a crystal, a camera records the reflected pattern and the data are reconstructed into a 3-D electron map by computers. The technique gives high-resolution images of the positions of atoms within a molecule, but only if researchers can first crystallize the molecule of interest. The team is making progress on crystallizing A3G, but wanted complementary, structural information in the meantime.

To achieve immediate results, the researchers elicited the help of Richard Gillilan, Ph.D., staff scientist at the Cornell High-Energy Synchrotron Source (CHESS) in Ithaca, N.Y., and second author on the JBC manuscript. Gillian has expertise in an imaging method called small-angle X-ray scattering (SAXS), which does not require the sample analyzed to be crystalline. While less detailed than crystallography, SAXS provides the general shape of a molecule, the spatial relationship of its parts to one another and hints about the function of each part.

Implications of Shape

Within infected human cells, viral DNA chains must temporarily unzip their two attached chains into single strands to be read and copied, and they must be copied if the virus is to infect more cells. Past work had established that A3G edits single strands of HIV DNA exposed while the virus copies itself. The newly determined structure of A3G suggests how it is able to crawl down HIV DNA chains, introducing mistakes wherever the chains are unzipped and skipping over zipped-up, double stranded regions. Researchers now believe A3G is capable of this because its structure is surprisingly different from other enzymes in its class.

The study also confirmed that A3G has two forms -- one that actively disrupts viral reproduction by editing as a free protein, and another in which the enzyme is inactive due to the presence of mRNA. The new SAXS results show what both forms look like, and suggest new ways in which HIV or the cell itself may turn off A3G.

HIV, along with deploying Vif, may also create a surplus of molecules that force A3G into its inactive form, researchers said. The theory is that HIV infection disrupts the normal process of making proteins, creating a surplus of free messenger RNAs that force A3G to become inactive. Messenger RNAs, copies of DNA that serve as a templates for the building of proteins, thus, may be natural regulators of whether A3G remains active or not. Preventing this mRNA interaction with A3G may represent yet another new avenue of attack on HIV.

"We are the first group to be able to say 'here are the parts of the molecule that need to be protected to keep A3G active in its age-old, ongoing war against viruses" Smith said. "We believe this work will lead to the development of a new treatments that enable patients to better harness their own natural defense mechanisms."

Greg Williams | EurekAlert!
Further information:
http://www.urmc.rochester.edu

Further reports about: A3G Aids DNA HIV chains

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>