Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction between lymph and liver cells may affect immune response

03.11.2006
A new study on the ability of liver cells to interact with T cells (lymph cells that play a role in regulating the immune response) found that such interactions do occur and demonstrated the mechanism by which they may take place. The results may help explain the altered immune responses that occur with aging and other conditions and may be useful in developing therapies for viral hepatitis and autoimmune diseases.

The results of this study appear in the November 2006 issue of Hepatology, the official journal of the American Association for the Study of Liver Diseases (AASLD). Published by John Wiley & Sons, Inc., Hepatology is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/hepatology.

The liver possesses an unusual ability to stimulate immune tolerance, possibly due to its distinctive architecture that allows T cells normally activated in the lymph system to become activated by liver cells. Normally, endothelial cells that line blood vessels form a physical barrier that prevents naïve (unactivated) T cells from accessing surrounding tissue; these cells must typically be activated by specialized cells known as professional antigen presenting cells (APCs) before they are able to migrate across the endothelium and interact with organ cells. Recent studies have shown that the liver is an exception in that liver cells may be able to act as APCs, activating T cells independently of the lymph system, a process which makes them less efficient. However, the question remains as to how T cells can cross the endothelial barrier to interact with liver cells.

A collaborative work between Alessandra Warren and David Le Couteur of the Centre for Education and Research on Ageing (CERA), Concord RG Hospital and Patrick Bertolino of the Centenary Institute, University of Sydney, Australia, has led to the first study investigating the interactions between lymphocytes (T cells), liver sinusoidal endothelial cells (LSECs) and hepatocytes (liver cells) using electron microscopy. LSECs are highly specialized endothelial cells that line the walls of hepatic sinusoid cells (gossamer-like structures that form the rich capillary network of the liver) and are perforated by fenestrations, or openings. The researchers hypothesized that the fenestrations could provide a portal through which liver cells and T cells could interact or that the interaction could take place across gaps between LSECs.

The study was conducted using mice whose livers had been injected with lymphocytes. The mouse livers were examined with two types of electron microscopy. Analysis of the images showed a large number of intrahepatic lymphocytes (IHLs) that had extensions similar to the dimensions of the fenestrations of the LSECs. These extensions were seen within the fenestrations and were observed to be in contact with minute projections on liver cells (hepatocyte microvilli). There were no observable gaps between LSECs and hepatocyte microvilli did not seem to interact with circulating lymphocytes. Further investigation showed that naïve T cells displayed the same extensions as IHLs and were also able to interact with liver cells through LSEC fenestrations. The authors propose the term "trans-endothelial hepatocyte-lymphocyte interactions" (TEHLI) to describe these interactions.

The discovery of TEHLI is the first demonstration by electron microscopy of the interaction between naïve T cells and liver cells in a living organism, which shows that the liver is an exception to the rule that T cells need to be activated by professional APCs in order to cross the endothelial barrier, and that hepatocytes can function as APCs. In fact, this T cell activation in the liver during early hepatitis C infection may contribute to the impaired immune response seen in chronic hepatitis C.

"As well as providing insight into the normal immune system, our observations might have implications for liver conditions associated with altered LSEC morphology and in particular those conditions associated with loss of fenestrations such as cirrhosis and old age," the authors conclude. "We have shown [in previous studies] that old age is associated with dramatic reductions in the fenestrations of LSECs therefore the altered immune responses of older people might in part be mechanistically linked to reduced opportunity for TEHLI in old age."

In an accompanying editorial in the same issue, Erin F. McAvoy and Paul Kubes of the University of Calgary in Alberta, Canada note that although the authors did not observe any interaction between hepatocyte microvilli and circulating lymphocytes, it is possible that this type of transient interaction is difficult to capture using electron microscopy. They suggest that the hepatocyte microvilli could function as a rapid screen for circulating lymphocytes, which might then decide to adhere and start the TEHLI process. "The notion that naïve T lymphocytes are capable of directly interacting with hepatocytes contradicts the dogma that naïve T cells cannot gain access to peripheral non-lymphoid tissues," the authors state, adding that the study furthers the notion that liver cells may be involved in hepatic immune tolerance. "Like any good study," they conclude, "the work of Warren et al., answers important questions but also raises some new and intriguing areas for further exploration."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/hepatology

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>