Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction between lymph and liver cells may affect immune response

03.11.2006
A new study on the ability of liver cells to interact with T cells (lymph cells that play a role in regulating the immune response) found that such interactions do occur and demonstrated the mechanism by which they may take place. The results may help explain the altered immune responses that occur with aging and other conditions and may be useful in developing therapies for viral hepatitis and autoimmune diseases.

The results of this study appear in the November 2006 issue of Hepatology, the official journal of the American Association for the Study of Liver Diseases (AASLD). Published by John Wiley & Sons, Inc., Hepatology is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/hepatology.

The liver possesses an unusual ability to stimulate immune tolerance, possibly due to its distinctive architecture that allows T cells normally activated in the lymph system to become activated by liver cells. Normally, endothelial cells that line blood vessels form a physical barrier that prevents naïve (unactivated) T cells from accessing surrounding tissue; these cells must typically be activated by specialized cells known as professional antigen presenting cells (APCs) before they are able to migrate across the endothelium and interact with organ cells. Recent studies have shown that the liver is an exception in that liver cells may be able to act as APCs, activating T cells independently of the lymph system, a process which makes them less efficient. However, the question remains as to how T cells can cross the endothelial barrier to interact with liver cells.

A collaborative work between Alessandra Warren and David Le Couteur of the Centre for Education and Research on Ageing (CERA), Concord RG Hospital and Patrick Bertolino of the Centenary Institute, University of Sydney, Australia, has led to the first study investigating the interactions between lymphocytes (T cells), liver sinusoidal endothelial cells (LSECs) and hepatocytes (liver cells) using electron microscopy. LSECs are highly specialized endothelial cells that line the walls of hepatic sinusoid cells (gossamer-like structures that form the rich capillary network of the liver) and are perforated by fenestrations, or openings. The researchers hypothesized that the fenestrations could provide a portal through which liver cells and T cells could interact or that the interaction could take place across gaps between LSECs.

The study was conducted using mice whose livers had been injected with lymphocytes. The mouse livers were examined with two types of electron microscopy. Analysis of the images showed a large number of intrahepatic lymphocytes (IHLs) that had extensions similar to the dimensions of the fenestrations of the LSECs. These extensions were seen within the fenestrations and were observed to be in contact with minute projections on liver cells (hepatocyte microvilli). There were no observable gaps between LSECs and hepatocyte microvilli did not seem to interact with circulating lymphocytes. Further investigation showed that naïve T cells displayed the same extensions as IHLs and were also able to interact with liver cells through LSEC fenestrations. The authors propose the term "trans-endothelial hepatocyte-lymphocyte interactions" (TEHLI) to describe these interactions.

The discovery of TEHLI is the first demonstration by electron microscopy of the interaction between naïve T cells and liver cells in a living organism, which shows that the liver is an exception to the rule that T cells need to be activated by professional APCs in order to cross the endothelial barrier, and that hepatocytes can function as APCs. In fact, this T cell activation in the liver during early hepatitis C infection may contribute to the impaired immune response seen in chronic hepatitis C.

"As well as providing insight into the normal immune system, our observations might have implications for liver conditions associated with altered LSEC morphology and in particular those conditions associated with loss of fenestrations such as cirrhosis and old age," the authors conclude. "We have shown [in previous studies] that old age is associated with dramatic reductions in the fenestrations of LSECs therefore the altered immune responses of older people might in part be mechanistically linked to reduced opportunity for TEHLI in old age."

In an accompanying editorial in the same issue, Erin F. McAvoy and Paul Kubes of the University of Calgary in Alberta, Canada note that although the authors did not observe any interaction between hepatocyte microvilli and circulating lymphocytes, it is possible that this type of transient interaction is difficult to capture using electron microscopy. They suggest that the hepatocyte microvilli could function as a rapid screen for circulating lymphocytes, which might then decide to adhere and start the TEHLI process. "The notion that naïve T lymphocytes are capable of directly interacting with hepatocytes contradicts the dogma that naïve T cells cannot gain access to peripheral non-lymphoid tissues," the authors state, adding that the study furthers the notion that liver cells may be involved in hepatic immune tolerance. "Like any good study," they conclude, "the work of Warren et al., answers important questions but also raises some new and intriguing areas for further exploration."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/hepatology

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>