Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction between lymph and liver cells may affect immune response

03.11.2006
A new study on the ability of liver cells to interact with T cells (lymph cells that play a role in regulating the immune response) found that such interactions do occur and demonstrated the mechanism by which they may take place. The results may help explain the altered immune responses that occur with aging and other conditions and may be useful in developing therapies for viral hepatitis and autoimmune diseases.

The results of this study appear in the November 2006 issue of Hepatology, the official journal of the American Association for the Study of Liver Diseases (AASLD). Published by John Wiley & Sons, Inc., Hepatology is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/hepatology.

The liver possesses an unusual ability to stimulate immune tolerance, possibly due to its distinctive architecture that allows T cells normally activated in the lymph system to become activated by liver cells. Normally, endothelial cells that line blood vessels form a physical barrier that prevents naïve (unactivated) T cells from accessing surrounding tissue; these cells must typically be activated by specialized cells known as professional antigen presenting cells (APCs) before they are able to migrate across the endothelium and interact with organ cells. Recent studies have shown that the liver is an exception in that liver cells may be able to act as APCs, activating T cells independently of the lymph system, a process which makes them less efficient. However, the question remains as to how T cells can cross the endothelial barrier to interact with liver cells.

A collaborative work between Alessandra Warren and David Le Couteur of the Centre for Education and Research on Ageing (CERA), Concord RG Hospital and Patrick Bertolino of the Centenary Institute, University of Sydney, Australia, has led to the first study investigating the interactions between lymphocytes (T cells), liver sinusoidal endothelial cells (LSECs) and hepatocytes (liver cells) using electron microscopy. LSECs are highly specialized endothelial cells that line the walls of hepatic sinusoid cells (gossamer-like structures that form the rich capillary network of the liver) and are perforated by fenestrations, or openings. The researchers hypothesized that the fenestrations could provide a portal through which liver cells and T cells could interact or that the interaction could take place across gaps between LSECs.

The study was conducted using mice whose livers had been injected with lymphocytes. The mouse livers were examined with two types of electron microscopy. Analysis of the images showed a large number of intrahepatic lymphocytes (IHLs) that had extensions similar to the dimensions of the fenestrations of the LSECs. These extensions were seen within the fenestrations and were observed to be in contact with minute projections on liver cells (hepatocyte microvilli). There were no observable gaps between LSECs and hepatocyte microvilli did not seem to interact with circulating lymphocytes. Further investigation showed that naïve T cells displayed the same extensions as IHLs and were also able to interact with liver cells through LSEC fenestrations. The authors propose the term "trans-endothelial hepatocyte-lymphocyte interactions" (TEHLI) to describe these interactions.

The discovery of TEHLI is the first demonstration by electron microscopy of the interaction between naïve T cells and liver cells in a living organism, which shows that the liver is an exception to the rule that T cells need to be activated by professional APCs in order to cross the endothelial barrier, and that hepatocytes can function as APCs. In fact, this T cell activation in the liver during early hepatitis C infection may contribute to the impaired immune response seen in chronic hepatitis C.

"As well as providing insight into the normal immune system, our observations might have implications for liver conditions associated with altered LSEC morphology and in particular those conditions associated with loss of fenestrations such as cirrhosis and old age," the authors conclude. "We have shown [in previous studies] that old age is associated with dramatic reductions in the fenestrations of LSECs therefore the altered immune responses of older people might in part be mechanistically linked to reduced opportunity for TEHLI in old age."

In an accompanying editorial in the same issue, Erin F. McAvoy and Paul Kubes of the University of Calgary in Alberta, Canada note that although the authors did not observe any interaction between hepatocyte microvilli and circulating lymphocytes, it is possible that this type of transient interaction is difficult to capture using electron microscopy. They suggest that the hepatocyte microvilli could function as a rapid screen for circulating lymphocytes, which might then decide to adhere and start the TEHLI process. "The notion that naïve T lymphocytes are capable of directly interacting with hepatocytes contradicts the dogma that naïve T cells cannot gain access to peripheral non-lymphoid tissues," the authors state, adding that the study furthers the notion that liver cells may be involved in hepatic immune tolerance. "Like any good study," they conclude, "the work of Warren et al., answers important questions but also raises some new and intriguing areas for further exploration."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/hepatology

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>