Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show gene reverts cancer genes to normal, predicts breast cancer prognosis

02.11.2006
Scientists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have shown that the activity of a gene that commandeers other cancer-causing genes, returning them to normal, can predict the prognosis of an individual with breast cancer.

The gene, Dachshund, normally regulates eye development and development of other tissues, in essence playing a role in determining the fate of some types of cells. Richard Pestell, M.D., Ph.D., director of the Kimmel Cancer Center at Jefferson and professor and chair of cancer biology at Jefferson Medical College, and co-workers looked at cancer cells from more than 2,000 breast cancer patients and found that this commandeering or "organizing" ability is increasingly lost in cancer cells and associated with the progression of disease. The more the gene is expressed in breast cancer, the researchers saw, the better the patient did. The scientists report their findings in October in the journal Molecular and Cellular Biology.

"This is a new type of gene in cancer that commandeers the cancerous genes and returns them to normal," says Dr. Pestell. "The standard cancer treatment strategy has been to block the proliferation of cancer cells or cause them to die. This is quite different. We've shown that the Dachshund gene reverts the cancerous phenotype and turns the cell back to a pre-malignant state. Cells don't die, but rather, they revert.

"It's a bad prognostic feature if you lose this organizer gene," he says, adding that it could be used as a prognostic marker for breast cancer.

... more about:
»breast cancer »cancer cells »dachshund

In the work, the researchers showed that Dachshund could block breast cancer growth in mice and also could halt breast cancer from invading other tissues in cell culture. They also found that the gene inhibits the expression of the cyclin D1 gene, a cancer-causing gene that is overexpressed in about half of all breast cancers.

The group used microarray technology – silicon chips containing ordered selections of genetic material upon which sample material can be tested – to analyze Dachshund expression during the development of breast cancer. The scientists compared normal breast cells, pre-cancerous "in situ" cells and more than 2,100 breast cancer cell samples. Dachshund gene expression was "significantly reduced" in breast cancer.

The average survival was almost 40 months better in women in whom their breast cancer continued to express Dachshund.

Dr. Pestell notes that the expression of Dachshund correlates with tumor size, stage and metastasis, with its expression greatly reduced in metastatic breast cancer cells. Dr. Pestell's team is examining other cell fate-determining genes in an attempt to identify new therapeutics for breast cancer and metastasis.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: breast cancer cancer cells dachshund

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>