Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show gene reverts cancer genes to normal, predicts breast cancer prognosis

02.11.2006
Scientists at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have shown that the activity of a gene that commandeers other cancer-causing genes, returning them to normal, can predict the prognosis of an individual with breast cancer.

The gene, Dachshund, normally regulates eye development and development of other tissues, in essence playing a role in determining the fate of some types of cells. Richard Pestell, M.D., Ph.D., director of the Kimmel Cancer Center at Jefferson and professor and chair of cancer biology at Jefferson Medical College, and co-workers looked at cancer cells from more than 2,000 breast cancer patients and found that this commandeering or "organizing" ability is increasingly lost in cancer cells and associated with the progression of disease. The more the gene is expressed in breast cancer, the researchers saw, the better the patient did. The scientists report their findings in October in the journal Molecular and Cellular Biology.

"This is a new type of gene in cancer that commandeers the cancerous genes and returns them to normal," says Dr. Pestell. "The standard cancer treatment strategy has been to block the proliferation of cancer cells or cause them to die. This is quite different. We've shown that the Dachshund gene reverts the cancerous phenotype and turns the cell back to a pre-malignant state. Cells don't die, but rather, they revert.

"It's a bad prognostic feature if you lose this organizer gene," he says, adding that it could be used as a prognostic marker for breast cancer.

... more about:
»breast cancer »cancer cells »dachshund

In the work, the researchers showed that Dachshund could block breast cancer growth in mice and also could halt breast cancer from invading other tissues in cell culture. They also found that the gene inhibits the expression of the cyclin D1 gene, a cancer-causing gene that is overexpressed in about half of all breast cancers.

The group used microarray technology – silicon chips containing ordered selections of genetic material upon which sample material can be tested – to analyze Dachshund expression during the development of breast cancer. The scientists compared normal breast cells, pre-cancerous "in situ" cells and more than 2,100 breast cancer cell samples. Dachshund gene expression was "significantly reduced" in breast cancer.

The average survival was almost 40 months better in women in whom their breast cancer continued to express Dachshund.

Dr. Pestell notes that the expression of Dachshund correlates with tumor size, stage and metastasis, with its expression greatly reduced in metastatic breast cancer cells. Dr. Pestell's team is examining other cell fate-determining genes in an attempt to identify new therapeutics for breast cancer and metastasis.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: breast cancer cancer cells dachshund

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>