Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer-fighting virus kills invasive brain cells

02.11.2006
Best results when VSV injected intravenously

Researchers funded by The Terry Fox Foundation and the Canadian Cancer Society have found that a cancer-fighting virus called VSV kills the most malignant form of brain cancer in mice.

The team also discovered that the virus can be given intravenously and targets invasive tumour cells.

The research team first modified the virus by altering one of the genes to make it safer in normal cells but still able to kill cancer cells. They then used a new way of delivering the virus – intravenously instead of directly into the tumour – and were able to target the main tumour as well as the tumour cells that had spread from the main mass.

The study was led by Dr. Peter Forsyth, a medical oncologist with the Alberta Cancer Board and a professor of oncology, neurosciences, biochemistry and molecular biology at the University of Calgary. The study is published in the Nov. 1 issue of the Journal of the National Cancer Institute.

The brain tumour cells that invade into the surrounding normal brain are usually "hidden" from current treatments and are the ones that usually lead to a disease recurrence. The research using the vesicular stomatitis virus (VSV) was conducted on mice as well as on tumour specimens from patients with an aggressive form of brain cancer called malignant glioma.

"These findings are an excellent example of the great value of scientific collaboration," says Darrell Fox, national director of The Terry Fox Foundation. "Dr. Forsyth is part of a pioneering group of researchers that are sharing their expertise and benefiting from the knowledge of others working in this exciting new area of anti-cancer treatment."

"Research into viruses that target cancer is a promising new avenue in the fight against this disease," says Dr. Barbara Whylie, CEO of the Canadian Cancer Society. "We look forward to the possibility of this research leading to more effective treatments for this devastating disease."

Despite dramatic advances in the treatment of malignant glioma, one of the most common types of nervous system cancers in adults, the prognosis of patients has not improved substantially in the past 30 years. While there is typically initial success in treatment, the cancer cells usually spread beyond the main tumour and the disease recurs in another part of the body. When this happens, the disease often becomes resistant to standard chemotherapy treatment.

"An ideal cancer-fighting virus should have effective delivery into multiple sites within the tumour, evade the body's immune responses, reproduce rapidly, spread within the tumour and infect cells that have spread. In this study, that's exactly what we found that VSV has done when injected intravenously," says Dr. Forsyth.

The researchers tested VSV on 14 cell lines of malignant glioma and found that the virus infected and killed all cell lines. The normal cell lines – those that did not contain malignant glioma cells – were not affected.

"One of the limitations to the use of these viruses in patients is the difficultly in getting a sufficient amount of virus to the cancer," says Dr. Forsyth. "While these are very early results, we are very encouraged to find that delivering VSV intravenously attacks the cancer cells and not normal cells. From a patient's point of view, it is obviously a lot easier to be treated with a few intravenous treatments rather than having several surgeries to inject the treatment directly into your brain."

In 2006, an estimated 2,500 Canadians will be diagnosed with brain cancer and 1,670 will die of it. Even with the best available treatments – usually surgery and chemotherapy or radiation – patients with malignant glioma survive, on average, just one year.

Nancy Rose | EurekAlert!
Further information:
http://www.cancer.ca
http://www.cancerboard.ab.ca

Further reports about: Cancer Forsyth VSV cancer-fighting glioma intravenously malignant tumour

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>