Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer-fighting virus kills invasive brain cells

02.11.2006
Best results when VSV injected intravenously

Researchers funded by The Terry Fox Foundation and the Canadian Cancer Society have found that a cancer-fighting virus called VSV kills the most malignant form of brain cancer in mice.

The team also discovered that the virus can be given intravenously and targets invasive tumour cells.

The research team first modified the virus by altering one of the genes to make it safer in normal cells but still able to kill cancer cells. They then used a new way of delivering the virus – intravenously instead of directly into the tumour – and were able to target the main tumour as well as the tumour cells that had spread from the main mass.

The study was led by Dr. Peter Forsyth, a medical oncologist with the Alberta Cancer Board and a professor of oncology, neurosciences, biochemistry and molecular biology at the University of Calgary. The study is published in the Nov. 1 issue of the Journal of the National Cancer Institute.

The brain tumour cells that invade into the surrounding normal brain are usually "hidden" from current treatments and are the ones that usually lead to a disease recurrence. The research using the vesicular stomatitis virus (VSV) was conducted on mice as well as on tumour specimens from patients with an aggressive form of brain cancer called malignant glioma.

"These findings are an excellent example of the great value of scientific collaboration," says Darrell Fox, national director of The Terry Fox Foundation. "Dr. Forsyth is part of a pioneering group of researchers that are sharing their expertise and benefiting from the knowledge of others working in this exciting new area of anti-cancer treatment."

"Research into viruses that target cancer is a promising new avenue in the fight against this disease," says Dr. Barbara Whylie, CEO of the Canadian Cancer Society. "We look forward to the possibility of this research leading to more effective treatments for this devastating disease."

Despite dramatic advances in the treatment of malignant glioma, one of the most common types of nervous system cancers in adults, the prognosis of patients has not improved substantially in the past 30 years. While there is typically initial success in treatment, the cancer cells usually spread beyond the main tumour and the disease recurs in another part of the body. When this happens, the disease often becomes resistant to standard chemotherapy treatment.

"An ideal cancer-fighting virus should have effective delivery into multiple sites within the tumour, evade the body's immune responses, reproduce rapidly, spread within the tumour and infect cells that have spread. In this study, that's exactly what we found that VSV has done when injected intravenously," says Dr. Forsyth.

The researchers tested VSV on 14 cell lines of malignant glioma and found that the virus infected and killed all cell lines. The normal cell lines – those that did not contain malignant glioma cells – were not affected.

"One of the limitations to the use of these viruses in patients is the difficultly in getting a sufficient amount of virus to the cancer," says Dr. Forsyth. "While these are very early results, we are very encouraged to find that delivering VSV intravenously attacks the cancer cells and not normal cells. From a patient's point of view, it is obviously a lot easier to be treated with a few intravenous treatments rather than having several surgeries to inject the treatment directly into your brain."

In 2006, an estimated 2,500 Canadians will be diagnosed with brain cancer and 1,670 will die of it. Even with the best available treatments – usually surgery and chemotherapy or radiation – patients with malignant glioma survive, on average, just one year.

Nancy Rose | EurekAlert!
Further information:
http://www.cancer.ca
http://www.cancerboard.ab.ca

Further reports about: Cancer Forsyth VSV cancer-fighting glioma intravenously malignant tumour

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>