Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping muscle regenerate

02.11.2006
Blocking a cellular signal protects muscle from wasting after injury and improves muscle regeneration

Muscle wasting can occur at all ages as the result of genetic defects, heart failure, spinal injury or cancer. A therapy to cure the loss of muscle mass and strength, which has a severe impact on patients’ lives, is desperately sought. Blocking a central signal molecule, researchers from the Mouse Biology Unit of the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, have now found a way to protect muscle from degenerating after injury and to improve muscle healing in mice. The study appears in the current issue of the Journal of Clinical Investigation and suggests two molecules with the potential to speed up the regeneration of damaged muscle as promising drug targets for new therapies against muscle wasting.

We don’t realise it when it is working fine, but our muscle is an intricate system that depends on a well regulated balance of protein production and breakdown. When this balance gets disturbed by disease or injury our muscles fade away, and with them our strength. A crucial player in this process is the signalling molecule NF-kB. It is well known as a messenger of inflammation and has recently been implicated in other degenerative conditions such as multiple sclerosis. The groups of Nadia Rosenthal and Manolis Pasparakis at the EMBL Mouse Biology Unit have now investigated the role NF-kB plays in muscle wasting.

First, they genetically removed NF-kB from the leg muscles of mice by blocking IKK2, a protein needed to activate the signal. Then, to mimic spinal injury, they blocked the communication between the spinal cord and the lower leg muscle – an intervention that under normal circumstances inevitably leads to muscle wasting.

... more about:
»IGF-1 »Muscle »NF-kB »wasting

“What we observed was truly amazing”, says Rosenthal, Head of EMBL’s Mouse Biology Unit. ”The mice showed hardly any muscle wasting after the injury; their muscle fibres maintained almost the same size, strength and distribution as in a healthy muscle. But that’s not all; blocking IKK2 also helped muscle healing. Without the NF-kB signal the muscle regenerated much better and faster.”

In response to injury or inflammation, NF-kB shuts down the production of proteins and stimulates their breakdown, which leads to the loss of muscle substance. Blocking NF-kB has the reverse effect, protects muscle from wasting and improves healing of already degenerated muscle.

Protection against muscle atrophy was even stronger when a gene encoding growth factor IGF-1 was added to muscle tissue lacking NF-kB. Rosenthal and her lab have been studying IGF-1 for a long time and have shown in previous studies that the molecule is very good at promoting repair of skeletal and cardiac muscles.

“The fact that NF-kB reduction helps maintain our muscle mass is a useful starting point to develop new therapies against muscle diseases,” says Foteini Mourkioti, who carried out the research in Rosenthal’s lab. “Adding IGF-1 has a similar effect as blocking NF-kB, but it must act, at least in parts, independently of NF-kB, because we observed a clear improvement when using the two treatments together,” she explains.

A combination of IKK2 inhibitors with growth factors like IGF-1, then seems to be the most promising basis for new therapies against muscle diseases. The human NF-kB and growth factor signaling networks are very similar to those of mice, so compounds interfering with them are likely to show the same positive effects in humans.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/downloads

Further reports about: IGF-1 Muscle NF-kB wasting

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>