Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ghost protein leaves fresh tracks in the cell

01.11.2006
Spectrin and ankyrin are two essential proteins acting like bricks and mortar to shape and fortify cell membranes. But distinguishing which protein is the brick and which is the mortar has turned out to be difficult. New evidence suggests that spectrin can do both jobs at once.

Ron Dubreuil, associate professor of biological sciences at the University of Illinois at Chicago, reports the finding in the Oct. 23 issue of the Journal of Cell Biology.

Spectrin was first discovered in red blood cells, where it forms a protein scaffold under the cell's membrane. It was named for its ability to maintain the shape of cell "ghosts," which have been emptied of their contents. Ankyrin serves as the mortar that attaches spectrin to the red blood cell membrane.

Dubreuil and his UIC co-workers have spent a decade looking at different types of cells -- mostly epithelial -- trying to learn what cues tell spectrin where to assemble in cells. They use the fruit fly as their test animal because its genetic makeup has many striking similarities to humans.

... more about:
»Dubreuil »Membrane »ankyrin »spectrin

"In our study, we showed spectrin doesn't have to bind to ankyrin to do its job," said Dubreuil. "This hints at a complexity we never had any idea about in trying to understand how these molecules work."

Dubreuil and his colleagues initially assumed that ankyrin was the key to targeting spectrin in all cells. But research in many laboratories had failed to find a cue for targeting that acted through ankyrin, so Dubreuil reworked his hypothesis.

"We decided to throw out our assumptions and start fresh," he said.

A laboratory fly was genetically engineered so that spectrin could no longer bind to ankyrin -- which, Dubreuil assumed, meant that spectrin should no longer attach to the membrane.

"We thought that was going to kill the function of the protein," he said, "but it didn't affect the ability of the protein to reach its destination at all. The molecule targeted correctly to the cell membrane." In fact, the genetically engineered flies often survived to adulthood, while mutants that lacked spectrin altogether died very early in development.

Meanwhile, Dubreuil discovered that another region of spectrin, called the PH domain, unexpectedly played an critical role. Removing the PH domain left spectrin unable to bind to the membrane in certain cells, and those flies died.

Dubreuil's research seeks to clarify how these proteins function in different cells. The hope is that researchers may one day create therapeutic molecules to compensate for genetic lesions in diseases such as hereditary anemia, Duchenne muscular dystrophy, cardiac arrhythmia and the degenerative brain disease spinocerebellar ataxia 5.

"As we learn more about mutations involving spectrin and their relationships to human diseases, we're going to have more and more questions about how these mutations affect specific functions of the molecule," he said.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Dubreuil Membrane ankyrin spectrin

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>