Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three new lung tumor subtypes identified in DNA profiling study

01.11.2006
A new study has identified three subtypes of non-small-cell lung cancer tumors, a finding that may provide valuable clinical information about patient survival in early- or late-stage disease, how likely the cancer is to spread and whether the tumor will prove resistant to chemotherapy.

A report of the study, led by researchers at the University of North Carolina at Chapel Hill's Lineberger Comprehensive Cancer Center, appears in the November issue of the Journal of Clinical Oncology.

Currently, lung cancer treatment decisions are based largely on the location and size of the tumor and if it has spread, or metastasized. And, lung tumor cells are diagnosed by their appearance under a microscope. About 20 percent of these tumors are classified as small-cell carcinomas; the rest fall into a catch-all diagnosis, non-small-cell carcinoma (NSCLC), for which therapies often lead to unpredictable results.

"We are frequently surprised with the range of responses that our patients' non-small-cell carcinomas have. Some are very responsive to treatment, some metastasize early, and we have no way of sorting this out up front," said study lead author Dr. David Neil Hayes, assistant professor of medicine in the division of hematology/oncology in UNC's School of Medicine. To that end, Hayes and his colleagues used a relatively new technology, DNA microarray analysis, which allows researchers to identify a tumor's genetic pattern.

... more about:
»DNA »carcinoma »subtypes

"We found that among patients who have tumors that look similar under a microscope there are dramatically different gene expression patterns," Hayes said. "But what's more interesting is that we see evidence that these genetic patterns are associated with significant differences in tumor behavior, which could not be anticipated by any conventional testing method."

The tumor subtypes, named bronchioid, squamoid and magnoid, according to their genetic pattern, also correlated with clinically relevant events, such as stage-specific survival and metastatic pattern.

For example, bronchioid tumors were associated with the likelihood of improved survival in early-stage disease, while squamoid tumors were associated with better survival in advanced disease.

And although some early-stage bronchioid tumors appear less likely to spread to the brain, they also may be the same tumors that are least likely to respond to chemotherapy because they express many genes associated with resistance to common chemotherapy agents.

"While this is still very preliminary, we hope to take these gene expression patterns and attempt to define a very simple, reproducible system that will allow us to unravel the complex patterns of how the tumors progress and how they respond to therapy," Hayes said.

"If we can pigeonhole these tumors right from the start, then we can become much more rational in our decision making for treatment and our ability to tell patients what to anticipate in terms of their risk, likelihood of recurrence and response to therapy," Hayes said. "That's the goal."

The new study evaluated lung cancer DNA microarray data sets from the University of Michigan, Stanford University and the Dana-Farber Cancer Institute in Boston, Mass. A total of 231 microarrays, each with 2,553 genes were analyzed. Hayes and his colleagues noted that the three new subtypes were robust and could be found frequently. All were identified in each of the data sets.

L. H. Lang | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: DNA carcinoma subtypes

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>