Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The CReSA is working on a new strategy to combat spongiforms

01.11.2006
Researchers at the Animal Health Research Centre (CReSA) are developing immunotherapeutical strategies against diseases produced by prion, such as Bovine Spongiform Encephalitis. The most recent results, published in the Journal of Virology, show that important advances have been made in tests using DNA vaccines on animal models, enabling a significant delay in the arrival of symptoms. In the long term, this research could lead to the production of treatment for humans.

The infectious agent responsible for transmissible spongiform encephalopathies, also known as prion diseases, (which include mad cow disease), is a protein known as the infectious prion (PrPi), which has no nucleic acid and which produces contagious neurodegenerative diseases in different species of animals.

The PrPi changes shape to that of an existing natural protein in the organism, the cellular prion (PrPc), but does not change its amino acid sequence. In certain circumstances, when the PrPi comes into contact with the original proteins, the proteins take on the shape of the in the infectious protein. Once this accumulates in the central nervous system, it destroys neural mass and makes the brain of affected animals take on a sponge form, which is where the term "spongiform diseases" comes from.

The researchers' work focuses on producing a vaccine that will provide an immune response that is as complete as possible, including both a humoral response (production of antibodies) and a cellular response (eliminating "infected" cells and activating the "memory", enabling the animal cells to continue responding to the infectious agent).

... more about:
»Cellular »Infectious »Prion »Vaccine »spongiform

The main obstacle to achieving this objective is that the prions do not produce an immune response since the metabolism of the affected animal identifies it as one of its own antigens. The challenge, therefore, is to overcome the tolerance barrier, that is, that the animal's body produces an immune response to one of its antigens.

The researchers have achieved this objective using a DNA vaccine based on a plasmid (an extrachromosomal DNA molecule) that expresses the prion gene with a small sequence that acts as a transport signal to cellular compartments called lysosomes. Once the vaccination is administered, the prion quickly degrades in the lysosome, allowing a marked improvement in the presentation of the cells of the immune system and inducing a powerful antibody and cellular response.

The results of the research have shown that in vaccinated mice, and only in those vaccinated, there is a significant delay in the appearance of symptoms after the intracerebral infection produced by the infectious prion.

The group is continuing its research to further investigate new administration routes for the vaccine and to eliminate the side effects observed in vaccinated animals.

This work may also enable advances to be made in the development of reactive agents for the diagnosis of diseases produced by the prion that until now could only be achieved post mortem.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

Further reports about: Cellular Infectious Prion Vaccine spongiform

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>