Bacteria could make new library of cancer drugs that are too complex to create artificially

The bacterium Streptomyces coelicolor naturally produce antibiotics called prodiginines.

This group of antibiotics has stimulated much recent interest as they can be used to target and kill cancer cells. A synthetic prodiginine analogue called GX15-070 is currently in phase 1 and 2 cancer treatment trials. However, analogues of other prodiginines, such as streptorubin B, could be even more powerful anti cancer tools, but they cannot currently be easily synthetically produced on a lab bench.

Professor Greg Challis and colleagues in the Chemistry Department of the University of Warwick have looked at the enzymes controlling the process that allows the bacterium Streptomyces coelicolor to create streptorubin B and have gained a clear understanding of which are the key enzymes that act at particular steps of that process. By manipulation of the enzyme content of the bacteria, they aim to produce a range of different compounds based closely on the form of streptorubin B normally formed by the bacteria. Some of these analogues of streptorubin B could provide the basis for developing useful new anti cancer drugs.

Professor Challis said:

“This approach combines the strengths of conventional organic synthesis, with the synthetic power of biology, to assemble complex and synthetically difficult structures. It could be particularly valuable for generating analogues of streptorubin B with all the promise that holds for the development of new anti cancer drugs”

Media Contact

Peter Dunn alfa

More Information:

http://www.warwick.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors