Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria could make new library of cancer drugs that are too complex to create artificially

01.11.2006
Researchers at the University of Warwick are examining a way of using bacteria to manufacture a new suite of potential anti-cancer drugs that are difficult to create synthetically on a lab bench.

The bacterium Streptomyces coelicolor naturally produce antibiotics called prodiginines.

This group of antibiotics has stimulated much recent interest as they can be used to target and kill cancer cells. A synthetic prodiginine analogue called GX15-070 is currently in phase 1 and 2 cancer treatment trials. However, analogues of other prodiginines, such as streptorubin B, could be even more powerful anti cancer tools, but they cannot currently be easily synthetically produced on a lab bench.

Professor Greg Challis and colleagues in the Chemistry Department of the University of Warwick have looked at the enzymes controlling the process that allows the bacterium Streptomyces coelicolor to create streptorubin B and have gained a clear understanding of which are the key enzymes that act at particular steps of that process. By manipulation of the enzyme content of the bacteria, they aim to produce a range of different compounds based closely on the form of streptorubin B normally formed by the bacteria. Some of these analogues of streptorubin B could provide the basis for developing useful new anti cancer drugs.

... more about:
»Cancer »analogue »prodiginine »streptorubin

Professor Challis said:

"This approach combines the strengths of conventional organic synthesis, with the synthetic power of biology, to assemble complex and synthetically difficult structures. It could be particularly valuable for generating analogues of streptorubin B with all the promise that holds for the development of new anti cancer drugs"

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

Further reports about: Cancer analogue prodiginine streptorubin

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>