Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test reveals effectiveness of potential Huntington's disease drugs

31.10.2006
A test using cultured cells provides an effective way to screen drugs against Huntington's disease and shows that two compounds - memantine and riluzole — are most effective at keeping cells alive under conditions that mimic the disorder, UT Southwestern Medical Center researchers report.

"These drugs have been tested in a variety of Huntington's disease models and some HD human trials and results are very difficult to interpret," said Dr. Ilya Bezprozvanny, associate professor of physiology and senior author of the study, available online and published in today's issue of Neuroscience Letters. "For some of these drugs conflicting results were obtained by different research groups, but it is impossible to figure out where the differences came from because studies were not conducted in parallel.

"We systematically and quantititatively tested the clinically relevant drugs side-by-side in the same HD model. That has never been done before," said Dr. Bezprozvanny.

Huntington's disease is a fatal genetic disorder, manifesting in adulthood, in which certain brain cells die. The disease results in uncontrolled movements, emotional disturbance and loss of mental ability. The offspring of a person with Huntington's have a 50 percent chance of inheriting it.

... more about:
»Disease »Huntington' »glutamate »memantine

More than 250,000 people in the United States have the disorder or are at risk for it. There is no cure, but several drugs are used or are being tested to relieve symptoms or slow Huntington's progression.

The disease affects a part of the brain called the striatum, which is involved in the control of movement and of "executive function," or planning and abstract thinking. It primarily attacks nerve cells called striatal medium spiny neurons, the main component of the striatum.

Dr. Bezprozvanny's group previously demonstrated that Huntington's striatal neurons are oversensitive to glutamate, a compound that nerve cells use to communicate with each other.

In the latest UT Southwestern study, the researchers cultured striatal spiny neurons from the brains of mice genetically engineered to express the mutant human Huntington gene. As predicted, glutamate killed the Huntington's neurons, but the scientists also tested five clinically relevant glutamate inhibitors to assess their protective ability.

Folic acid has been suggested as a treatment for people with Huntington's because it interacts with homocysteine, a compound that makes nerve cells more vulnerable to glutamate. Gabapentin and lamotrigine, both glutamate inhibitors, are used in epilepsy treatment and as a mood stabilizer, respectively. These three compounds did not significantly protect the cultured cells.

However, a drug called memantine, which is used to treat Alzheimer's disease, and riluzole, used in amyotrophic lateral sclerosis, did protect the cells. Memantine demonstrated a stronger effect in the study. Memantine has also shown evidence of retarding the progression of Huntington's in people, while riluzole has helped relieve some symptoms.

"Our results provide the first systematic comparison of various clinically relevant glutamate pathway inhibitors for HD treatment and indicate that memantine holds the most promise based on its in vitro efficacy," Dr. Bezprozvanny said. "Whole animal studies of memantine in an HD mouse model will be required to validate these findings."

Other UT Southwestern researchers involved in the study were Drs. Jun Wu, research associate in physiology, and Tie-Shan Tang, instructor in physiology.

The work was supported by the Robert A. Welch Foundation, the High Q Foundation and the National Institute for Neurological Diseases and Stroke.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Disease Huntington' glutamate memantine

More articles from Life Sciences:

nachricht Cells cling and spiral 'like vines' in first 3-D tissue scaffold for plants
27.08.2015 | University of Cambridge

nachricht Cellular contamination pathway for plutonium, other heavy elements, identified
27.08.2015 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

Im Focus: A Grand Voyage for Tiny Organisms

Climate and Ecosystem Change in the Mediterranean

Since the opening of the Suez Canal in 1869 many hundreds of marine animal and plant species from the Red Sea have invaded the eastern Mediterranean, leading...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Cells cling and spiral 'like vines' in first 3-D tissue scaffold for plants

27.08.2015 | Life Sciences

Hypoallergenic parks: Coming soon?

27.08.2015 | Health and Medicine

Stiffer breast tissue in obese women promotes tumors

27.08.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>