Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test reveals effectiveness of potential Huntington's disease drugs

31.10.2006
A test using cultured cells provides an effective way to screen drugs against Huntington's disease and shows that two compounds - memantine and riluzole — are most effective at keeping cells alive under conditions that mimic the disorder, UT Southwestern Medical Center researchers report.

"These drugs have been tested in a variety of Huntington's disease models and some HD human trials and results are very difficult to interpret," said Dr. Ilya Bezprozvanny, associate professor of physiology and senior author of the study, available online and published in today's issue of Neuroscience Letters. "For some of these drugs conflicting results were obtained by different research groups, but it is impossible to figure out where the differences came from because studies were not conducted in parallel.

"We systematically and quantititatively tested the clinically relevant drugs side-by-side in the same HD model. That has never been done before," said Dr. Bezprozvanny.

Huntington's disease is a fatal genetic disorder, manifesting in adulthood, in which certain brain cells die. The disease results in uncontrolled movements, emotional disturbance and loss of mental ability. The offspring of a person with Huntington's have a 50 percent chance of inheriting it.

... more about:
»Disease »Huntington' »glutamate »memantine

More than 250,000 people in the United States have the disorder or are at risk for it. There is no cure, but several drugs are used or are being tested to relieve symptoms or slow Huntington's progression.

The disease affects a part of the brain called the striatum, which is involved in the control of movement and of "executive function," or planning and abstract thinking. It primarily attacks nerve cells called striatal medium spiny neurons, the main component of the striatum.

Dr. Bezprozvanny's group previously demonstrated that Huntington's striatal neurons are oversensitive to glutamate, a compound that nerve cells use to communicate with each other.

In the latest UT Southwestern study, the researchers cultured striatal spiny neurons from the brains of mice genetically engineered to express the mutant human Huntington gene. As predicted, glutamate killed the Huntington's neurons, but the scientists also tested five clinically relevant glutamate inhibitors to assess their protective ability.

Folic acid has been suggested as a treatment for people with Huntington's because it interacts with homocysteine, a compound that makes nerve cells more vulnerable to glutamate. Gabapentin and lamotrigine, both glutamate inhibitors, are used in epilepsy treatment and as a mood stabilizer, respectively. These three compounds did not significantly protect the cultured cells.

However, a drug called memantine, which is used to treat Alzheimer's disease, and riluzole, used in amyotrophic lateral sclerosis, did protect the cells. Memantine demonstrated a stronger effect in the study. Memantine has also shown evidence of retarding the progression of Huntington's in people, while riluzole has helped relieve some symptoms.

"Our results provide the first systematic comparison of various clinically relevant glutamate pathway inhibitors for HD treatment and indicate that memantine holds the most promise based on its in vitro efficacy," Dr. Bezprozvanny said. "Whole animal studies of memantine in an HD mouse model will be required to validate these findings."

Other UT Southwestern researchers involved in the study were Drs. Jun Wu, research associate in physiology, and Tie-Shan Tang, instructor in physiology.

The work was supported by the Robert A. Welch Foundation, the High Q Foundation and the National Institute for Neurological Diseases and Stroke.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Disease Huntington' glutamate memantine

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>