Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The power behind insect flight: Researchers reveal key kinetic component

31.10.2006
Findings provide new insight into heart disease and the evolution of flight

Researchers from Rensselaer Polytechnic Institute and the University of Vermont have discovered a key molecular mechanism that allows tiny flies and other "no-see-ums" to whirl their wings at a dizzying rate of up to 1,000 times per second. The findings are being reported in the Oct. 30-Nov. 3 online early edition of the Proceedings of the National Academy of Sciences (PNAS).

"We have determined important details of the biochemical reaction by which the fastest known muscle type -- insect flight muscle -- powers flight," said Douglas Swank, assistant professor of biology at Rensselaer and lead author of the PNAS paper.

The findings will help scientists gain a better understanding of how chemical energy is converted into muscle movements, such as human heart muscle pumping blood. The research also could lead to novel insights into heart disease, and might ultimately serve in the development of gene therapies targeted toward correcting mutations in proteins that detrimentally alter the speed at which heart muscle fibers contract.

... more about:
»Flight »Myosin »Swank »endocarditis »phosphate »reaction »type

Since insects have been remarkably successful in adapting to a great range of physical and biological environments, in large part due to their ability to fly, the research also will interest scientists studying the evolution of flight, Swank noted. The project is supported by a three-year $240,000 grant from the National Institutes of Health and a four-year $260,000 grant from the American Heart Association.

The research is focused on a key component of muscle called myosin, the protein that powers muscle cell contraction. Swank's team focused its efforts on the fruit fly and asked a basic question: Why are fast muscles fast and slow ones slow? The researchers discovered that the reaction mechanism in insect flight muscle on the molecular level is different from how slower muscle types work.

"Most research has focused on slower muscle fibers in larger animals," Swank said. "By investigating extreme examples, e.g. the fastest known muscle type, the mechanisms that differentiate fast and slow muscle fiber types are more readily apparent."

In general, myosin breaks down adenosine triphosphate (ATP), the chemical fuel consumed by muscles, and converts it into force and motion. To do this, myosin splits ATP into two compounds, adenine diphosphate (ADP) and phosphate. Each compound is released from myosin at different rates. In slow-muscle contraction, ADP release is the slowest step of the reaction, but in the fastest muscle fibers, Swank's team has discovered that phosphate release is the slowest step of the reaction.

This finding is significant because the overall chemical reaction rate is set by the slowest step of the reaction. "What we have found is that in the fastest muscle type, ADP release has been sped up to the point where phosphate release is the primary rate-limiting step that determines how fast a muscle can contract," Swank said.

The next step, according to the researchers, is to experiment with other fast muscle types, such as the rattlesnake shaker muscle and fast mammalian muscle fibers. "By broadening our research, we will be able to determine if the phosphate release rate contributes to setting muscle speed in fast muscle types from other species," according to Swank.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

Further reports about: Flight Myosin Swank endocarditis phosphate reaction type

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>