Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The power behind insect flight: Researchers reveal key kinetic component

31.10.2006
Findings provide new insight into heart disease and the evolution of flight

Researchers from Rensselaer Polytechnic Institute and the University of Vermont have discovered a key molecular mechanism that allows tiny flies and other "no-see-ums" to whirl their wings at a dizzying rate of up to 1,000 times per second. The findings are being reported in the Oct. 30-Nov. 3 online early edition of the Proceedings of the National Academy of Sciences (PNAS).

"We have determined important details of the biochemical reaction by which the fastest known muscle type -- insect flight muscle -- powers flight," said Douglas Swank, assistant professor of biology at Rensselaer and lead author of the PNAS paper.

The findings will help scientists gain a better understanding of how chemical energy is converted into muscle movements, such as human heart muscle pumping blood. The research also could lead to novel insights into heart disease, and might ultimately serve in the development of gene therapies targeted toward correcting mutations in proteins that detrimentally alter the speed at which heart muscle fibers contract.

... more about:
»Flight »Myosin »Swank »endocarditis »phosphate »reaction »type

Since insects have been remarkably successful in adapting to a great range of physical and biological environments, in large part due to their ability to fly, the research also will interest scientists studying the evolution of flight, Swank noted. The project is supported by a three-year $240,000 grant from the National Institutes of Health and a four-year $260,000 grant from the American Heart Association.

The research is focused on a key component of muscle called myosin, the protein that powers muscle cell contraction. Swank's team focused its efforts on the fruit fly and asked a basic question: Why are fast muscles fast and slow ones slow? The researchers discovered that the reaction mechanism in insect flight muscle on the molecular level is different from how slower muscle types work.

"Most research has focused on slower muscle fibers in larger animals," Swank said. "By investigating extreme examples, e.g. the fastest known muscle type, the mechanisms that differentiate fast and slow muscle fiber types are more readily apparent."

In general, myosin breaks down adenosine triphosphate (ATP), the chemical fuel consumed by muscles, and converts it into force and motion. To do this, myosin splits ATP into two compounds, adenine diphosphate (ADP) and phosphate. Each compound is released from myosin at different rates. In slow-muscle contraction, ADP release is the slowest step of the reaction, but in the fastest muscle fibers, Swank's team has discovered that phosphate release is the slowest step of the reaction.

This finding is significant because the overall chemical reaction rate is set by the slowest step of the reaction. "What we have found is that in the fastest muscle type, ADP release has been sped up to the point where phosphate release is the primary rate-limiting step that determines how fast a muscle can contract," Swank said.

The next step, according to the researchers, is to experiment with other fast muscle types, such as the rattlesnake shaker muscle and fast mammalian muscle fibers. "By broadening our research, we will be able to determine if the phosphate release rate contributes to setting muscle speed in fast muscle types from other species," according to Swank.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

Further reports about: Flight Myosin Swank endocarditis phosphate reaction type

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>