Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The power behind insect flight: Researchers reveal key kinetic component

31.10.2006
Findings provide new insight into heart disease and the evolution of flight

Researchers from Rensselaer Polytechnic Institute and the University of Vermont have discovered a key molecular mechanism that allows tiny flies and other "no-see-ums" to whirl their wings at a dizzying rate of up to 1,000 times per second. The findings are being reported in the Oct. 30-Nov. 3 online early edition of the Proceedings of the National Academy of Sciences (PNAS).

"We have determined important details of the biochemical reaction by which the fastest known muscle type -- insect flight muscle -- powers flight," said Douglas Swank, assistant professor of biology at Rensselaer and lead author of the PNAS paper.

The findings will help scientists gain a better understanding of how chemical energy is converted into muscle movements, such as human heart muscle pumping blood. The research also could lead to novel insights into heart disease, and might ultimately serve in the development of gene therapies targeted toward correcting mutations in proteins that detrimentally alter the speed at which heart muscle fibers contract.

... more about:
»Flight »Myosin »Swank »endocarditis »phosphate »reaction »type

Since insects have been remarkably successful in adapting to a great range of physical and biological environments, in large part due to their ability to fly, the research also will interest scientists studying the evolution of flight, Swank noted. The project is supported by a three-year $240,000 grant from the National Institutes of Health and a four-year $260,000 grant from the American Heart Association.

The research is focused on a key component of muscle called myosin, the protein that powers muscle cell contraction. Swank's team focused its efforts on the fruit fly and asked a basic question: Why are fast muscles fast and slow ones slow? The researchers discovered that the reaction mechanism in insect flight muscle on the molecular level is different from how slower muscle types work.

"Most research has focused on slower muscle fibers in larger animals," Swank said. "By investigating extreme examples, e.g. the fastest known muscle type, the mechanisms that differentiate fast and slow muscle fiber types are more readily apparent."

In general, myosin breaks down adenosine triphosphate (ATP), the chemical fuel consumed by muscles, and converts it into force and motion. To do this, myosin splits ATP into two compounds, adenine diphosphate (ADP) and phosphate. Each compound is released from myosin at different rates. In slow-muscle contraction, ADP release is the slowest step of the reaction, but in the fastest muscle fibers, Swank's team has discovered that phosphate release is the slowest step of the reaction.

This finding is significant because the overall chemical reaction rate is set by the slowest step of the reaction. "What we have found is that in the fastest muscle type, ADP release has been sped up to the point where phosphate release is the primary rate-limiting step that determines how fast a muscle can contract," Swank said.

The next step, according to the researchers, is to experiment with other fast muscle types, such as the rattlesnake shaker muscle and fast mammalian muscle fibers. "By broadening our research, we will be able to determine if the phosphate release rate contributes to setting muscle speed in fast muscle types from other species," according to Swank.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

Further reports about: Flight Myosin Swank endocarditis phosphate reaction type

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>