Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The power behind insect flight: Researchers reveal key kinetic component

31.10.2006
Findings provide new insight into heart disease and the evolution of flight

Researchers from Rensselaer Polytechnic Institute and the University of Vermont have discovered a key molecular mechanism that allows tiny flies and other "no-see-ums" to whirl their wings at a dizzying rate of up to 1,000 times per second. The findings are being reported in the Oct. 30-Nov. 3 online early edition of the Proceedings of the National Academy of Sciences (PNAS).

"We have determined important details of the biochemical reaction by which the fastest known muscle type -- insect flight muscle -- powers flight," said Douglas Swank, assistant professor of biology at Rensselaer and lead author of the PNAS paper.

The findings will help scientists gain a better understanding of how chemical energy is converted into muscle movements, such as human heart muscle pumping blood. The research also could lead to novel insights into heart disease, and might ultimately serve in the development of gene therapies targeted toward correcting mutations in proteins that detrimentally alter the speed at which heart muscle fibers contract.

... more about:
»Flight »Myosin »Swank »endocarditis »phosphate »reaction »type

Since insects have been remarkably successful in adapting to a great range of physical and biological environments, in large part due to their ability to fly, the research also will interest scientists studying the evolution of flight, Swank noted. The project is supported by a three-year $240,000 grant from the National Institutes of Health and a four-year $260,000 grant from the American Heart Association.

The research is focused on a key component of muscle called myosin, the protein that powers muscle cell contraction. Swank's team focused its efforts on the fruit fly and asked a basic question: Why are fast muscles fast and slow ones slow? The researchers discovered that the reaction mechanism in insect flight muscle on the molecular level is different from how slower muscle types work.

"Most research has focused on slower muscle fibers in larger animals," Swank said. "By investigating extreme examples, e.g. the fastest known muscle type, the mechanisms that differentiate fast and slow muscle fiber types are more readily apparent."

In general, myosin breaks down adenosine triphosphate (ATP), the chemical fuel consumed by muscles, and converts it into force and motion. To do this, myosin splits ATP into two compounds, adenine diphosphate (ADP) and phosphate. Each compound is released from myosin at different rates. In slow-muscle contraction, ADP release is the slowest step of the reaction, but in the fastest muscle fibers, Swank's team has discovered that phosphate release is the slowest step of the reaction.

This finding is significant because the overall chemical reaction rate is set by the slowest step of the reaction. "What we have found is that in the fastest muscle type, ADP release has been sped up to the point where phosphate release is the primary rate-limiting step that determines how fast a muscle can contract," Swank said.

The next step, according to the researchers, is to experiment with other fast muscle types, such as the rattlesnake shaker muscle and fast mammalian muscle fibers. "By broadening our research, we will be able to determine if the phosphate release rate contributes to setting muscle speed in fast muscle types from other species," according to Swank.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

Further reports about: Flight Myosin Swank endocarditis phosphate reaction type

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>