Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists convert modern enzyme into its hypothesized ancestor

31.10.2006
By making a single substitution in the amino acid sequence of a modern enzyme, scientists have changed its function into that of a theoretical distant ancestor, providing the first experimental evidence for the common origin of the two distinct enzyme types.

The research, conducted by a team that includes scientists from the U.S. Department of Energy's Brookhaven National Laboratory and the Karolinska Institute in Stockholm, Sweden, will be published online the week of October 30, 2006, by the Proceedings of the National Academy of Sciences.

"It's as if we turned back the clock nearly 2.5 billion years, to the time when oxygen first appeared in Earth's atmosphere, to get a snapshot of how enzymes evolved to deal with reactive oxygen species," said Brookhaven biochemist John Shanklin, lead author on the paper.

Oxygen, while essential for many life processes, can also exist in potentially toxic forms, such as superoxide and hydroxyl radicals, as well as hydrogen peroxide. After the first photosynthetic organisms appeared on Earth some 2.5 billion years ago, pumping oxygen into the atmosphere, organisms with enzymes capable of deactivating these reactive oxygen species had an increased chance of survival.

... more about:
»Oxidase »acid »amino »amino acid »ancestor »desaturase

Scientists have theorized that the first oxygen-detoxifying enzymes were simple oxidases, which combine reactive forms of oxygen, such as peroxide, with hydrogen ions (protons) and electrons to yield water (H2O). While these enzymes have little in common with more modern biosynthetic enzymes that mediate oxygen chemistry, they share certain structural and sequence characteristics around their active sites -- namely, a pair of iron atoms for binding oxygen within a similar four-helix bundle. These similarities suggested the possibility of a common origin, but experimental evidence was lacking -- until now.

The Brookhaven/Karolinska team had previously performed a structural comparison of the active site of a modern desaturase enzyme (which uses activated oxygen to remove two hydrogens from fatty acids) with that of a simple peroxidase. They used a stand-in for oxygen binding in the active site (because oxygen itself does not stay bound long enough for studies) and produced molecular-level crystal structures using high intensity beams of x-rays at the National Synchrotron Light Source at Brookhaven Lab and the MAX Lab at the University of Lund Synchrotron in Sweden.

These crystal structures revealed remarkable similarities, with the single major difference being a change in one amino acid residue adjacent to the oxygen-binding site: The oxidase had an acidic residue capable of donating protons to the oxygen to form water while the desaturase did not.

Based on this difference, the scientists hypothesized that if they engineered a "desaturase" with an acidic amino acid residue in place of the non-reactive one, they would convert the desaturase to an oxidase. Using the tools of molecular biology, this is exactly what they did.

"Substituting aspartic acid at this site on the desaturase made a huge change," Shanklin said.

The new enzyme's desaturase activity decreased 2000-fold while its oxidase activity increased 31-fold compared with the original desaturase. New crystal structures, derived at the European Synchrotron Radiation Facility in France, revealed that the substitution placed the acid group into the ideal position for donating protons to the oxygen.

"Usually, when enzymes evolve from a common ancestor, there are many amino acids that change to change the function," Shanklin said. "So it is remarkable that changing the identity of a single amino acid in an enzyme of 400 amino acids can make such a dramatic switch in the chemical reaction it performs. This finding, that such a simple change can dramatically alter function, provides experimental support for the hypothesis that these two enzyme groups share a common origin."

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

Further reports about: Oxidase acid amino amino acid ancestor desaturase

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>