Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists convert modern enzyme into its hypothesized ancestor

31.10.2006
By making a single substitution in the amino acid sequence of a modern enzyme, scientists have changed its function into that of a theoretical distant ancestor, providing the first experimental evidence for the common origin of the two distinct enzyme types.

The research, conducted by a team that includes scientists from the U.S. Department of Energy's Brookhaven National Laboratory and the Karolinska Institute in Stockholm, Sweden, will be published online the week of October 30, 2006, by the Proceedings of the National Academy of Sciences.

"It's as if we turned back the clock nearly 2.5 billion years, to the time when oxygen first appeared in Earth's atmosphere, to get a snapshot of how enzymes evolved to deal with reactive oxygen species," said Brookhaven biochemist John Shanklin, lead author on the paper.

Oxygen, while essential for many life processes, can also exist in potentially toxic forms, such as superoxide and hydroxyl radicals, as well as hydrogen peroxide. After the first photosynthetic organisms appeared on Earth some 2.5 billion years ago, pumping oxygen into the atmosphere, organisms with enzymes capable of deactivating these reactive oxygen species had an increased chance of survival.

... more about:
»Oxidase »acid »amino »amino acid »ancestor »desaturase

Scientists have theorized that the first oxygen-detoxifying enzymes were simple oxidases, which combine reactive forms of oxygen, such as peroxide, with hydrogen ions (protons) and electrons to yield water (H2O). While these enzymes have little in common with more modern biosynthetic enzymes that mediate oxygen chemistry, they share certain structural and sequence characteristics around their active sites -- namely, a pair of iron atoms for binding oxygen within a similar four-helix bundle. These similarities suggested the possibility of a common origin, but experimental evidence was lacking -- until now.

The Brookhaven/Karolinska team had previously performed a structural comparison of the active site of a modern desaturase enzyme (which uses activated oxygen to remove two hydrogens from fatty acids) with that of a simple peroxidase. They used a stand-in for oxygen binding in the active site (because oxygen itself does not stay bound long enough for studies) and produced molecular-level crystal structures using high intensity beams of x-rays at the National Synchrotron Light Source at Brookhaven Lab and the MAX Lab at the University of Lund Synchrotron in Sweden.

These crystal structures revealed remarkable similarities, with the single major difference being a change in one amino acid residue adjacent to the oxygen-binding site: The oxidase had an acidic residue capable of donating protons to the oxygen to form water while the desaturase did not.

Based on this difference, the scientists hypothesized that if they engineered a "desaturase" with an acidic amino acid residue in place of the non-reactive one, they would convert the desaturase to an oxidase. Using the tools of molecular biology, this is exactly what they did.

"Substituting aspartic acid at this site on the desaturase made a huge change," Shanklin said.

The new enzyme's desaturase activity decreased 2000-fold while its oxidase activity increased 31-fold compared with the original desaturase. New crystal structures, derived at the European Synchrotron Radiation Facility in France, revealed that the substitution placed the acid group into the ideal position for donating protons to the oxygen.

"Usually, when enzymes evolve from a common ancestor, there are many amino acids that change to change the function," Shanklin said. "So it is remarkable that changing the identity of a single amino acid in an enzyme of 400 amino acids can make such a dramatic switch in the chemical reaction it performs. This finding, that such a simple change can dramatically alter function, provides experimental support for the hypothesis that these two enzyme groups share a common origin."

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

Further reports about: Oxidase acid amino amino acid ancestor desaturase

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>