Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mass copying of genes speeds up evolution

In the latest issue of PNAS, Proceedings of the National Academy of Sciences, a Swedish-American team of researchers show how selective gene amplification-­mass copying of a specific gene­-can increase the speed with which organisms adapt to their environment.

All organisms can amplify parts of their DNA under certain conditions, and the variants that have an increased amount of one special gene can gain survival advantages when they are exposed to various types of external conditions, such as stress in the form of antibiotics (bacteria), chemotherapy (humans), or insecticides (insects).

In this study the researchers show that the bacteria Salmonella typhimurium uses several different mechanisms to increase the number of copies of a gene that helps the cell use the sugar lactose as a source of nourishment.

“When the bacterium’s gene for making use of lactose is inefficient, that is, when the bacterium has an ineffective enzyme for breaking down lactose, mutant bacteria are favored instead, with up to a hundred-fold rise in the number of copies of the gene,” says Professor Dan Andersson, one of those behind the study.

... more about:
»bacteria »bacterium »copies »enzyme »lactose

This has two consequences: on the one hand, the bacterium manages to grow on lactose because the amount of the inefficient enzyme increases and, on the other hand, the chances increase that the bacterium will develop a mutation in one of these 100 identical genes leading to an improvement in the enzyme function. The scientists also show that amplification proceeds stepwise: first, a large region is duplicated and then smaller regions within that region are amplified to high numbers of copies. According to Dan Andersson, it is probably much more common than was previously thought, which is extremely exciting.

“And they are important, since this means that evolutionary changes can take place at a considerably higher speed. One reason the extent of this has been underestimated is their inherent instability, which makes them difficult to study in laboratory experiments.”

Anneli Waara | alfa
Further information:

Further reports about: bacteria bacterium copies enzyme lactose

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>