Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWM brain research supports drug development from jellyfish protein

30.10.2006
Testing of aequorin yields promising results

With the research support from the University of Wisconsin-Milwaukee, a Wisconsin biotech company has found that a compound from a protein found in jellyfish is neuro-protective and may be effective in treating neurodegenerative diseases.

Testing of aequorin has yielded promising results, said Mark Y. Underwood of Quincy Bioscience located in Madison. Researcher James Moyer, Jr., an assistant professor at UW-Milwaukee, subjected brain cells to the "lab" equivalent of a stroke, and more than half treated with aequorin survived without residual toxicity.

Why does it work? Diseases like Alzheimer's are associated with a loss of "calcium-binding" proteins that protect nerve cells, said Moyer. Calcium is necessary for communication between neurons in the brain, and learning and memory are not possible without it. But too much of it leads to neuron death, interfering with memory and contributing to neurodegenerative diseases.

"There are ways in which cells control the influx of calcium, such as sequestering it by binding it with certain proteins," said Moyer. "If it weren't for these proteins, the high level of calcium would overwhelm the neuron and trigger a cascade of events ultimately leading to cell death."

Calcium-binding proteins decline with age, however, limiting the brain's ability to control or handle the amount of calcium "allowed in."

Aequorin, the jellyfish protein, appears to be a viable substitute.

Moyer, like Underwood, is interested in the "calcium hypothesis of aging and dementia," which is just one of many theories that attempts to explain what is going on in neuron degeneration.

He became interested in aequorin as an undergraduate at UW-Milwaukee, after reading an article that linked the stings of jellyfish with the symptoms of multiple sclerosis, a disease of the central nervous system that his mother has.

Aequorin was discovered in the 1960s and has been used in research for a long time as an indicator of calcium. But the protein has never been tried as a treatment to control calcium levels. Underwood believes his company is at about the 12-year mark in the typical 15-year cycle for a new drug to be developed.

Moyer's research centers on brain changes that occur as a result of aging. Specifically, he is interested in the part of the brain called the hippocampus, which is responsible for forming new memories. These capabilities not only deteriorate in neurodegenerative disorders such as Alzheimer's disease, but they also become impaired simply by aging.

Aging increases the number of "doors" that allow calcium ions to enter the cells, he said.

Moyer, who came to UW-Milwaukee from a post-doctoral position at Yale University, performs Pavlovian trace conditioning experiments to evaluate aging-related learning and memory deficits. These tasks first teach rodents to associate one stimulus with another and then test their memory of the association. During training, the stimuli are separated by a brief period of time, which requires the animal to maintain a memory of the first stimulus. The "stimulus free" period makes the task more difficult, especially for older animals.

Moyer's work also has implications outside of disease. He is able to show that at middle age, when the animal's learning ability or memory is not yet impaired, it already shows a drop in the number of neurons that contain an important calcium-binding protein.

"That cellular changes precede memory deficits indicates there is a window of opportunity for intervention before it's too late," he says. "Once the cells are lost, there is little chance of regaining normal brain function."

James Moyer, Jr. | EurekAlert!
Further information:
http://www.uwm.edu

Further reports about: Calcium Disease Neuron aequorin jellyfish neurodegenerative disease

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>