Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWM brain research supports drug development from jellyfish protein

30.10.2006
Testing of aequorin yields promising results

With the research support from the University of Wisconsin-Milwaukee, a Wisconsin biotech company has found that a compound from a protein found in jellyfish is neuro-protective and may be effective in treating neurodegenerative diseases.

Testing of aequorin has yielded promising results, said Mark Y. Underwood of Quincy Bioscience located in Madison. Researcher James Moyer, Jr., an assistant professor at UW-Milwaukee, subjected brain cells to the "lab" equivalent of a stroke, and more than half treated with aequorin survived without residual toxicity.

Why does it work? Diseases like Alzheimer's are associated with a loss of "calcium-binding" proteins that protect nerve cells, said Moyer. Calcium is necessary for communication between neurons in the brain, and learning and memory are not possible without it. But too much of it leads to neuron death, interfering with memory and contributing to neurodegenerative diseases.

"There are ways in which cells control the influx of calcium, such as sequestering it by binding it with certain proteins," said Moyer. "If it weren't for these proteins, the high level of calcium would overwhelm the neuron and trigger a cascade of events ultimately leading to cell death."

Calcium-binding proteins decline with age, however, limiting the brain's ability to control or handle the amount of calcium "allowed in."

Aequorin, the jellyfish protein, appears to be a viable substitute.

Moyer, like Underwood, is interested in the "calcium hypothesis of aging and dementia," which is just one of many theories that attempts to explain what is going on in neuron degeneration.

He became interested in aequorin as an undergraduate at UW-Milwaukee, after reading an article that linked the stings of jellyfish with the symptoms of multiple sclerosis, a disease of the central nervous system that his mother has.

Aequorin was discovered in the 1960s and has been used in research for a long time as an indicator of calcium. But the protein has never been tried as a treatment to control calcium levels. Underwood believes his company is at about the 12-year mark in the typical 15-year cycle for a new drug to be developed.

Moyer's research centers on brain changes that occur as a result of aging. Specifically, he is interested in the part of the brain called the hippocampus, which is responsible for forming new memories. These capabilities not only deteriorate in neurodegenerative disorders such as Alzheimer's disease, but they also become impaired simply by aging.

Aging increases the number of "doors" that allow calcium ions to enter the cells, he said.

Moyer, who came to UW-Milwaukee from a post-doctoral position at Yale University, performs Pavlovian trace conditioning experiments to evaluate aging-related learning and memory deficits. These tasks first teach rodents to associate one stimulus with another and then test their memory of the association. During training, the stimuli are separated by a brief period of time, which requires the animal to maintain a memory of the first stimulus. The "stimulus free" period makes the task more difficult, especially for older animals.

Moyer's work also has implications outside of disease. He is able to show that at middle age, when the animal's learning ability or memory is not yet impaired, it already shows a drop in the number of neurons that contain an important calcium-binding protein.

"That cellular changes precede memory deficits indicates there is a window of opportunity for intervention before it's too late," he says. "Once the cells are lost, there is little chance of regaining normal brain function."

James Moyer, Jr. | EurekAlert!
Further information:
http://www.uwm.edu

Further reports about: Calcium Disease Neuron aequorin jellyfish neurodegenerative disease

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>