Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular method reveals ‘conversations’ between proteins in cells

30.10.2006
By further refining a molecular method they previously pioneered, researchers at Uppsala University have managed to uncover interactions between protein molecules in human cells. The method, described in the latest issue of the scientific journal Nature Methods, opens entirely new potential for understanding the role of proteins in various diseases.

Proteins build up the body’s cells and tissues, and knowledge of the human genome has entailed that scientists today know all the proteins our bodies can generate. It is known that many pathologies can be tied to changes in proteins, so it is important for us to increase our knowledge of what proteins bind to each other, how they work together in cells, and how these processes impact various disturbances.

“With this new method we can see how individual proteins interact directly in cells, which has not been possible until now. In the past scientists have largely studied how much of a protein is present in various tissues, but now we can study how they function as well,” says researcher Ola Söderberg, a member of the team that carried out the study within the framework of the team’s research project on molecular tools.

The method is a further elaboration of the so-called proximity ligation test that was recently developed by the same research group. Proximity ligation means that proteins shown to be present bring about the formation of DNA strings that can be detected effectively and with a high degree of sensitivity. With the new modification, it is now possible to show just where in a cell or tissue sample the interacting proteins are to be found. Even individual protein molecules can be singled out.

... more about:
»Molecular »method

“The method may be of great importance to scientists in their understanding of cell processes and ultimately may lead to more accurate examinations of tissue sample in diseases and to very early diagnosis,” says Professor Ulf Landegren, who directs the research team.

Anneli Waara | alfa
Further information:
http://www.nature.com/nmeth/journal/vaop/ncurrent/index.html

Further reports about: Molecular method

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>