Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a molecular mechanism underlying limb architecture

30.10.2006
A genetic study performed by Dr. Marie Kmita, a researcher at the Institut de Recherches Cliniques de Montréal (IRCM), in collaboration with Drs Basile Tarchini and Denis Duboule of the University of Geneva in Switzerland, sheds light on the origins of the architecture of arms and legs.

The results of their research, to be published in the October 26 issue of the prestigious journal Nature, describe how the operational mode of several "architect" genes has been recycled in the course of evolution to enable limb formation.

The establishment of the body architecture is genetically controlled and involves a family of "architect" genes called the Hox genes which has been conserved throughout evolution. The ancestral function of the Hox genes is to set up "foundations" of the body by defining positional information that instruct cells about their fate. This is how the body is shaped and how organs and skeletal elements are positioned. In the course of evolution, some of these genes have been reused to control limb development. Indeed, previous research by Dr. Kmita showed that without these genes, limbs would not form.

The particular feature of Hox genes is that they are aligned along the DNA molecule in the same order as the structures they will form. The sequential activation of these genes is therefore responsible for the defined distribution of organs and various parts of the skeleton along the anterior-posterior axis (from the head to the feet). The study, carried out by Dr. Kmita and her colleagues, shows that the ancestral strategy underlying Hox genes' activation was recycled during the emergence of vertebrate limbs to set up the architecture of arms and legs. In embryonic limb buds, the Hox genes are sequentially activated so that their domains of activity overlap along the anterior-posterior axis (from the thumb to the little finger), with a maximum activity in the posterior domain. It is precisely this peak of activity that triggers the activation of a "polarizing" gene called Sonic Hedgehog, specifically in the posterior region of the developing limb, thereby generating the asymmetry of our limbs (for example, the fact that our fingers are different from each other).

... more about:
»Architecture »Evolution »Hox »Kmita »activation »asymmetry

This discovery explains how limb asymmetry is genetically set up. This is an important finding as limb asymmetry is required for the broad range of motion of our hands, which make them man's primary tool.

Lucette Thériault | EurekAlert!
Further information:
http://www.ircm.qc.ca

Further reports about: Architecture Evolution Hox Kmita activation asymmetry

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>