Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a molecular mechanism underlying limb architecture

30.10.2006
A genetic study performed by Dr. Marie Kmita, a researcher at the Institut de Recherches Cliniques de Montréal (IRCM), in collaboration with Drs Basile Tarchini and Denis Duboule of the University of Geneva in Switzerland, sheds light on the origins of the architecture of arms and legs.

The results of their research, to be published in the October 26 issue of the prestigious journal Nature, describe how the operational mode of several "architect" genes has been recycled in the course of evolution to enable limb formation.

The establishment of the body architecture is genetically controlled and involves a family of "architect" genes called the Hox genes which has been conserved throughout evolution. The ancestral function of the Hox genes is to set up "foundations" of the body by defining positional information that instruct cells about their fate. This is how the body is shaped and how organs and skeletal elements are positioned. In the course of evolution, some of these genes have been reused to control limb development. Indeed, previous research by Dr. Kmita showed that without these genes, limbs would not form.

The particular feature of Hox genes is that they are aligned along the DNA molecule in the same order as the structures they will form. The sequential activation of these genes is therefore responsible for the defined distribution of organs and various parts of the skeleton along the anterior-posterior axis (from the head to the feet). The study, carried out by Dr. Kmita and her colleagues, shows that the ancestral strategy underlying Hox genes' activation was recycled during the emergence of vertebrate limbs to set up the architecture of arms and legs. In embryonic limb buds, the Hox genes are sequentially activated so that their domains of activity overlap along the anterior-posterior axis (from the thumb to the little finger), with a maximum activity in the posterior domain. It is precisely this peak of activity that triggers the activation of a "polarizing" gene called Sonic Hedgehog, specifically in the posterior region of the developing limb, thereby generating the asymmetry of our limbs (for example, the fact that our fingers are different from each other).

... more about:
»Architecture »Evolution »Hox »Kmita »activation »asymmetry

This discovery explains how limb asymmetry is genetically set up. This is an important finding as limb asymmetry is required for the broad range of motion of our hands, which make them man's primary tool.

Lucette Thériault | EurekAlert!
Further information:
http://www.ircm.qc.ca

Further reports about: Architecture Evolution Hox Kmita activation asymmetry

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>