Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New gene found for Crohn's disease

A consortium of American and Canadian researchers report in Science Express, a rapid online publication by the journal Science, the discovery of a new genetic link to Crohn's disease. While most of the mutations in the gene, which codes for a receptor in a major inflammatory pathway, are strongly associated with Crohn's, surprisingly, one type of mutation appears to confer significant protection. The finding, say the researchers, points to a crucial target for drugs that might better manage Crohn's disease and ulcerative colitis.

More than 1 million Americans have Crohn's or colitis, known collectively as inflammatory bowel disease (IBD).

"Crohn's and colitis are chronic conditions that profoundly impact the day-to-day lives of affected individuals. Moreover, inflammatory bowel disease often runs in families, making the pinpointing of the responsible genes especially important if we are to find ways to better treat or even prevent IBD," said first author of the study, Richard H. Duerr, M.D., associate professor of medicine and human genetics at the University of Pittsburgh.

According to senior author Judy H. Cho, M.D., associate professor in the departments of medicine and genetics at Yale School of Medicine, the findings highlight a major inflammatory pathway and change in thinking about disease-associated genetic variation.

... more about:
»Associate »Crohn' »IBD »Mutation »SNP »inflammatory

"This pathway is particularly intriguing because we appear to have identified a gene variant that protects against development of IBD, a finding that may lead us to think about the genetics of health as much as about the genetics of disease," said Dr. Cho, who also is director of the Inflammatory Bowel Disease Center at Yale.

The study's authors represent the IBD Genetics Consortium, which is funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH). In addition to the University of Pittsburgh and Yale, the consortium's member institutions include Cedars-Sinai Medical Center in Los Angeles, the University of Chicago, Johns Hopkins University, Université de Montréal, Mount Sinai Hospital in Toronto and the University of Toronto.

Because IBD tends to run in families and is more frequently seen in certain ethnic populations, especially Ashkenazi Jews, scientists have long suspected a significant genetic component. Although previous genetic studies found a link between Crohn's disease and mutations in a gene known as CARD15, those mutations alone are not considered to account for all of the genetic components of the disease.

To identify additional genes that are associated with IBD, the researchers scanned the genome--all 22,000 or so genes--by testing more than 300,000 single nucleotide polymorphisms, or SNPs, in people with Crohn's disease. For comparison, they looked for the presence of these SNPs in a similar number of people without IBD.

Out of the hundreds of thousands of SNPs, the genome-wide scan found three that were most strongly associated with Crohn's disease. Of those, two were in the CARD15 gene. However, the third SNP was located in a different gene on a different chromosome.

When the researchers looked at the specific gene where the third SNP resided, they found that it coded for a protein that is part of the immune cell receptor for interleukin-23 (IL-23), an important mediator of inflammation in the body. However, when they began looking for all of the polymorphisms in the IL-23 receptor gene of affected individuals to determine which ones were the most detrimental, they made an unexpected discovery. Although several polymorphisms were associated with a significantly increased risk of developing IBD, one appeared to confer a very strong protection against IBD.

"Of all the SNPs we studied in people with and without IBD, this protective SNP was the most statistically significant finding in our study. So, it took us a bit by surprise," said Dr. Duerr. "We are not sure yet what it means in terms of improving treatments for IBD patients. But, we speculate that blocking the activity of IL-23 or manipulating its pathway will be an effective way to manage IBD," said Dr. Duerr, who also is head of the Inflammatory Bowel Disease Genetics Program at the University of Pittsburgh School of Medicine and co-director of the Inflammatory Bowel Disease Center at the University of Pittsburgh Medical Center (UPMC).

In an early stage clinical trial led by other investigators, IBD patients given a monoclonal antibody that blocks IL-23 and a related inflammatory mediator saw their conditions improve. Furthermore, recent studies in mice in which the gene for IL-23 is deleted demonstrated that IL-23 is essential for the development and maintenance of chronic intestinal inflammation. Such evidence, combined with the current discovery, suggests therapies that target the IL-23 pathway may lead to more individualized, better-directed therapies for IBD, the authors say.

"This important discovery not only offers new hope for better therapies for patients with Crohn's disease, it also highlights the promise of the human genome project and subsequent investments by the NIH in large scale, collaborative research projects to unravel the causes of, and hopefully better treatments for complex, enigmatic diseases," said Stephen P. James, M.D., director of the Division of Digestive Diseases and Nutrition at the National Institutes of Health's NIDDK.

The authors caution that more must be understood about the role the IL-23 pathway serves in protecting against other diseases before seeking to block or manipulate its activity with drugs or other means.

Lisa Rossi | EurekAlert!
Further information:

Further reports about: Associate Crohn' IBD Mutation SNP inflammatory

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>