Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene found for Crohn's disease

30.10.2006
A consortium of American and Canadian researchers report in Science Express, a rapid online publication by the journal Science, the discovery of a new genetic link to Crohn's disease. While most of the mutations in the gene, which codes for a receptor in a major inflammatory pathway, are strongly associated with Crohn's, surprisingly, one type of mutation appears to confer significant protection. The finding, say the researchers, points to a crucial target for drugs that might better manage Crohn's disease and ulcerative colitis.

More than 1 million Americans have Crohn's or colitis, known collectively as inflammatory bowel disease (IBD).

"Crohn's and colitis are chronic conditions that profoundly impact the day-to-day lives of affected individuals. Moreover, inflammatory bowel disease often runs in families, making the pinpointing of the responsible genes especially important if we are to find ways to better treat or even prevent IBD," said first author of the study, Richard H. Duerr, M.D., associate professor of medicine and human genetics at the University of Pittsburgh.

According to senior author Judy H. Cho, M.D., associate professor in the departments of medicine and genetics at Yale School of Medicine, the findings highlight a major inflammatory pathway and change in thinking about disease-associated genetic variation.

... more about:
»Associate »Crohn' »IBD »Mutation »SNP »inflammatory

"This pathway is particularly intriguing because we appear to have identified a gene variant that protects against development of IBD, a finding that may lead us to think about the genetics of health as much as about the genetics of disease," said Dr. Cho, who also is director of the Inflammatory Bowel Disease Center at Yale.

The study's authors represent the IBD Genetics Consortium, which is funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH). In addition to the University of Pittsburgh and Yale, the consortium's member institutions include Cedars-Sinai Medical Center in Los Angeles, the University of Chicago, Johns Hopkins University, Université de Montréal, Mount Sinai Hospital in Toronto and the University of Toronto.

Because IBD tends to run in families and is more frequently seen in certain ethnic populations, especially Ashkenazi Jews, scientists have long suspected a significant genetic component. Although previous genetic studies found a link between Crohn's disease and mutations in a gene known as CARD15, those mutations alone are not considered to account for all of the genetic components of the disease.

To identify additional genes that are associated with IBD, the researchers scanned the genome--all 22,000 or so genes--by testing more than 300,000 single nucleotide polymorphisms, or SNPs, in people with Crohn's disease. For comparison, they looked for the presence of these SNPs in a similar number of people without IBD.

Out of the hundreds of thousands of SNPs, the genome-wide scan found three that were most strongly associated with Crohn's disease. Of those, two were in the CARD15 gene. However, the third SNP was located in a different gene on a different chromosome.

When the researchers looked at the specific gene where the third SNP resided, they found that it coded for a protein that is part of the immune cell receptor for interleukin-23 (IL-23), an important mediator of inflammation in the body. However, when they began looking for all of the polymorphisms in the IL-23 receptor gene of affected individuals to determine which ones were the most detrimental, they made an unexpected discovery. Although several polymorphisms were associated with a significantly increased risk of developing IBD, one appeared to confer a very strong protection against IBD.

"Of all the SNPs we studied in people with and without IBD, this protective SNP was the most statistically significant finding in our study. So, it took us a bit by surprise," said Dr. Duerr. "We are not sure yet what it means in terms of improving treatments for IBD patients. But, we speculate that blocking the activity of IL-23 or manipulating its pathway will be an effective way to manage IBD," said Dr. Duerr, who also is head of the Inflammatory Bowel Disease Genetics Program at the University of Pittsburgh School of Medicine and co-director of the Inflammatory Bowel Disease Center at the University of Pittsburgh Medical Center (UPMC).

In an early stage clinical trial led by other investigators, IBD patients given a monoclonal antibody that blocks IL-23 and a related inflammatory mediator saw their conditions improve. Furthermore, recent studies in mice in which the gene for IL-23 is deleted demonstrated that IL-23 is essential for the development and maintenance of chronic intestinal inflammation. Such evidence, combined with the current discovery, suggests therapies that target the IL-23 pathway may lead to more individualized, better-directed therapies for IBD, the authors say.

"This important discovery not only offers new hope for better therapies for patients with Crohn's disease, it also highlights the promise of the human genome project and subsequent investments by the NIH in large scale, collaborative research projects to unravel the causes of, and hopefully better treatments for complex, enigmatic diseases," said Stephen P. James, M.D., director of the Division of Digestive Diseases and Nutrition at the National Institutes of Health's NIDDK.

The authors caution that more must be understood about the role the IL-23 pathway serves in protecting against other diseases before seeking to block or manipulate its activity with drugs or other means.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: Associate Crohn' IBD Mutation SNP inflammatory

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>