Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Wellcome brain gain for world leading neuroscience lab

One of the world’s foremost brain imaging research facilities has received a major boost after being awarded £6.74 million funding over five years by the Wellcome Trust. The former Functional Imaging Laboratory at University College London (UCL) is the recipient of a Wellcome Trust Strategic Award and becomes the Wellcome Trust Centre for Neuroimaging at UCL.

The Strategic Award will further bolster the reputation of a laboratory already renowned for its research into the neural basis of human cognition, work which is extending our understanding of common neurological and psychiatric diseases, such as schizophrenia and dementia.

“The human brain and human cognition are incredibly complex, and as such, understanding them requires not only state-of-the-art technology, but also a body of science with strong theoretical underpinnings,” explains Professor Ray Dolan, Director of the laboratory. “Our goal at the Wellcome Trust Centre for Neuroimaging at UCL is to provide excellence in both these aspects of imaging neuroscience. This will enable us to study in depth the functional architecture of the human brain, with the ultimate objective of identifying the core mechanisms that cause common human neurological and psychiatric diseases.”

Disorders of human brain function are a major source of human morbidity. Finding effective treatments for common expressions of human brain dysfunction, such as schizophrenia or dementia, poses major intellectual and technical challenges.

A lack of means to study the living human brain has historically been a major barrier to progress, but this is now less of a problem due to the availability of powerful non-invasive imaging tools such as functional magnetic resonance (fMRI) and magnetoencephalography (MEG). The WTCFN has three state of the art fMRI scanners and one MEG scanner.

“There has been formidable progress in understanding human brain function using fMRI and MEG techniques over the past ten years,” says Professor Dolan. “Application of these techniques has reached a level of maturity that we are now poised to apply them in a manner that can impact on our understanding of fundamental mechanisms of brain based diseases.”

“We are very pleased to support the Wellcome Trust Centre for Neuroimaging at UCL,” says Dr Sohaila Rastan, Director of Science Funding at the Wellcome Trust. “Research at the laboratory has provided valuable insights into our understanding of the basic processes of perception and cognition which will undoubtedly impact on the development and assessment of effective therapies for common human neurological and psychiatric disorders.

“The Strategic Award builds on the Trust’s continued support of the laboratory and will allow its research staff to continue producing science that is world class and high impact, aided by highly-skilled support staff.”

In addition to the Wellcome Trust funding, UCL is providing a further £1.2 million as its contribution to the Strategic Award.

"We are delighted to receive this award of nearly £7 million from the Wellcome Trust, and UCL will provide a further £1.2 million to support neuroscience research at the Wellcome Trust Centre for Neuroimaging at UCL," says Professor Malcolm Grant, President and Provost of UCL. "Brain imaging is one of the most exciting and powerful tools available to explore the human brain. This award will enable us to make further great strides in mapping the brain's many functions and finding new treatments for a range of neurological conditions which still pose a challenge to science and medicine."

Since its inception in 1994, the Functional Imaging Laboratory has developed a world class reputation, with such leading names as Professors Ray Dolan, Chris Frith, Richard Frackowiak and Karl Friston, four of the “top 25 most cited scientists” worldwide in Behaviour and Neuroscience.

Some recent research highlights from the Functional Imaging Laboratory include:


One of the most famous studies to come out of the FIL was carried out by Dr Eleanor Maguire, who showed that London's cabbies have enlarged hippocampi due to their having to navigate the city's streets.

Dr Maguire's research aims to establish how we internally represent large-scale space and our experiences within it, and seeks to determine how this supports our sense of who and where we are.

Dr Maguire also studies disorders affecting memory, such as developmental disorders in children and dementia in the elderly, with the aim of developing clinical memory tests for early diagnosis and, in the longer term, to inform treatment and rehabilitative interventions.


Professor Geraint Rees heads a group of clinicians and scientists that is attempting to decode the neural processes underlying conscious awareness of the world around us. Research from his group suggests that consciousness is associated not just with activity in areas of the brain related to sensory processing, but also those associated with attention.

Using functional MRI scanners, Rees and his team are developing ways to use brain activity to accurately track how the contents of an individual’s stream of consciousness changes over several minutes. His team has also made the first steps towards decoding subliminal perception and the unconscious mind. By measuring brain activity when an object is shown briefly and subliminally to volunteers, the scientists were able to predict what was being shown even when it was invisible to the volunteers themselves. Professor Rees says ‘These are the first basic steps towards reading somebody’s mind’


Developed by Professor Karl Friston, Statistical Parametric Mapping (SPM) is both a concept and a piece of software, now used by hundreds of neuroscientists worldwide to analyse brain imaging data. Whether they are studying vision, language or stroke, researchers can use the same general purpose tool, SPM, to bridge the gap between theoretical and experimental neuroscience.

Unlike previous methods of analysis, SPM treats imaging data as samples of a continuous process, and reports results in a brain-wide co-ordinate system. Originally designed for fMRI and PET, more recently, SPM has been augmented to handle EEG and MEG which provide richer information about the brain's dynamics.

Craig Brierley | alfa
Further information:

Further reports about: Brain MEG Merit Award Neuroimaging Neuroscience SPM UCL fMRI human brain neurological

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>