Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Wellcome brain gain for world leading neuroscience lab

30.10.2006
One of the world’s foremost brain imaging research facilities has received a major boost after being awarded £6.74 million funding over five years by the Wellcome Trust. The former Functional Imaging Laboratory at University College London (UCL) is the recipient of a Wellcome Trust Strategic Award and becomes the Wellcome Trust Centre for Neuroimaging at UCL.

The Strategic Award will further bolster the reputation of a laboratory already renowned for its research into the neural basis of human cognition, work which is extending our understanding of common neurological and psychiatric diseases, such as schizophrenia and dementia.

“The human brain and human cognition are incredibly complex, and as such, understanding them requires not only state-of-the-art technology, but also a body of science with strong theoretical underpinnings,” explains Professor Ray Dolan, Director of the laboratory. “Our goal at the Wellcome Trust Centre for Neuroimaging at UCL is to provide excellence in both these aspects of imaging neuroscience. This will enable us to study in depth the functional architecture of the human brain, with the ultimate objective of identifying the core mechanisms that cause common human neurological and psychiatric diseases.”

Disorders of human brain function are a major source of human morbidity. Finding effective treatments for common expressions of human brain dysfunction, such as schizophrenia or dementia, poses major intellectual and technical challenges.

A lack of means to study the living human brain has historically been a major barrier to progress, but this is now less of a problem due to the availability of powerful non-invasive imaging tools such as functional magnetic resonance (fMRI) and magnetoencephalography (MEG). The WTCFN has three state of the art fMRI scanners and one MEG scanner.

“There has been formidable progress in understanding human brain function using fMRI and MEG techniques over the past ten years,” says Professor Dolan. “Application of these techniques has reached a level of maturity that we are now poised to apply them in a manner that can impact on our understanding of fundamental mechanisms of brain based diseases.”

“We are very pleased to support the Wellcome Trust Centre for Neuroimaging at UCL,” says Dr Sohaila Rastan, Director of Science Funding at the Wellcome Trust. “Research at the laboratory has provided valuable insights into our understanding of the basic processes of perception and cognition which will undoubtedly impact on the development and assessment of effective therapies for common human neurological and psychiatric disorders.

“The Strategic Award builds on the Trust’s continued support of the laboratory and will allow its research staff to continue producing science that is world class and high impact, aided by highly-skilled support staff.”

In addition to the Wellcome Trust funding, UCL is providing a further £1.2 million as its contribution to the Strategic Award.

"We are delighted to receive this award of nearly £7 million from the Wellcome Trust, and UCL will provide a further £1.2 million to support neuroscience research at the Wellcome Trust Centre for Neuroimaging at UCL," says Professor Malcolm Grant, President and Provost of UCL. "Brain imaging is one of the most exciting and powerful tools available to explore the human brain. This award will enable us to make further great strides in mapping the brain's many functions and finding new treatments for a range of neurological conditions which still pose a challenge to science and medicine."

Since its inception in 1994, the Functional Imaging Laboratory has developed a world class reputation, with such leading names as Professors Ray Dolan, Chris Frith, Richard Frackowiak and Karl Friston, four of the “top 25 most cited scientists” worldwide in Behaviour and Neuroscience.

Some recent research highlights from the Functional Imaging Laboratory include:

INSIDE THE MIND OF A TAXI-DRIVER

One of the most famous studies to come out of the FIL was carried out by Dr Eleanor Maguire, who showed that London's cabbies have enlarged hippocampi due to their having to navigate the city's streets.

Dr Maguire's research aims to establish how we internally represent large-scale space and our experiences within it, and seeks to determine how this supports our sense of who and where we are.

Dr Maguire also studies disorders affecting memory, such as developmental disorders in children and dementia in the elderly, with the aim of developing clinical memory tests for early diagnosis and, in the longer term, to inform treatment and rehabilitative interventions.

DECODING CONSCIOUSNESS

Professor Geraint Rees heads a group of clinicians and scientists that is attempting to decode the neural processes underlying conscious awareness of the world around us. Research from his group suggests that consciousness is associated not just with activity in areas of the brain related to sensory processing, but also those associated with attention.

Using functional MRI scanners, Rees and his team are developing ways to use brain activity to accurately track how the contents of an individual’s stream of consciousness changes over several minutes. His team has also made the first steps towards decoding subliminal perception and the unconscious mind. By measuring brain activity when an object is shown briefly and subliminally to volunteers, the scientists were able to predict what was being shown even when it was invisible to the volunteers themselves. Professor Rees says ‘These are the first basic steps towards reading somebody’s mind’

BRIDGING THE GAP BETWEEN THEORY AND EXPERIMENT

Developed by Professor Karl Friston, Statistical Parametric Mapping (SPM) is both a concept and a piece of software, now used by hundreds of neuroscientists worldwide to analyse brain imaging data. Whether they are studying vision, language or stroke, researchers can use the same general purpose tool, SPM, to bridge the gap between theoretical and experimental neuroscience.

Unlike previous methods of analysis, SPM treats imaging data as samples of a continuous process, and reports results in a brain-wide co-ordinate system. Originally designed for fMRI and PET, more recently, SPM has been augmented to handle EEG and MEG which provide richer information about the brain's dynamics.

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

Further reports about: Brain MEG Merit Award Neuroimaging Neuroscience SPM UCL fMRI human brain neurological

More articles from Life Sciences:

nachricht Researchers reveal new details on aged brain, Alzheimer's and dementia
21.11.2017 | Allen Institute

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>