Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a Global Map of Epigenetic Variation Human Epigenome Project generates DNA methylation profiles of three chromosomes

30.10.2006
A new DNA map, published in Nature Genetics today, provides the first large-scale study of biological inheritance in human that is not DNA-sequence based. The map of human chromosomes 6, 20 and 22 shows that as many as one in six of our human genes might be subject to modifications that could alter their activity by epigenetic changes - under the influence of the environment. Understanding these modifications will be important in diagnosis, drug development and disease study.

The epigenome is the interface of genetics and environment, where plasticity of epigenetic changes modifies the hard wiring of our genetic code. Increasingly it is thought that at this interface lie clues to how lifestyle and the environment affect our susceptibility to many diseases.

Epigenetic changes include modification of DNA bases, through addition or removal of simple chemical tags, such as a methyl group, and similar changes of the proteins that are closely entwined with DNA to form chromatin, the functional form of the genome. Collectively, these modifications are also referred to as the 'epigenetic code' which researchers believe defines how different genetic programmes can be executed from the same genome in different tissues.

To examine how and where DNA modification might vary, the team from the Wellcome Trust Sanger Institute and Epigenomics AG measured levels of DNA methylation across three chromosomes in twelve different tissues. The results, from almost two million measurements, looked for differences between tissues as well as differences that might be linked to age or sex.

... more about:
»Chromosome »DNA »genetic marker »methylation

Although DNA methylation can vary over a wide dynamic range, the study revealed the majority of sites to have on/off status (e.g. being unmethylated or methylated) and identified distinct regions in the genome where methylation differs between tissues but no significant differences were found between two age groups - average age 26 years old and average age 68 years old. Age has been suspected to influence the plastic changes in methylation, and perhaps influence disease processes, but these remarkable results suggest methylation states are more stable than previously thought. The authors do emphasize that discrete changes may occur in regions or tissues not examined here.

Moreover, the two sexes showed indistinguishable patterns of methylation of regions not on the sex chromosomes, X and Y, or part of imprinted regions which are known to have parent-of-origin specific methylation patterns. Except for those regions, the global patterns of methylation are thus the same in males and females.

"There is much less noise in the system than we feared," explained Dr Stephan Beck, Project Leader at the Wellcome Trust Sanger Institute, "Our data show DNA methylation to be stable, specific and essentially binary (that is, on or off) - all key hallmarks of informative clinical markers. Our conclusion is that epigenetic markers will be a powerful addition to the current repertoire of genetic markers for future disease association studies, particularly where non-genetic factors are known to play a role, for example in cancer, and where they are suspected, as in autoimmune disease."

Analysis of the global epigenetic landscape revealed methylation to be tissue- and cell-type specific with sperm showing the greatest difference (up to 20%) when compared to other cell types, emphasizing the extensive epigenetic reprogramming during gametogenesis.

The team found that tissue-specific methylation of one in three genes they studied was associated with changed levels of gene activity. Intriguingly, tissue-specific differences were enriched in regions called evolutionary conserved regions (ECRs), lying distant from genes, out in the 'junk' DNA. ECRs were more often differentially methylated than regions close to genes, suggesting they might have an undiscovered role in gene or chromosome activity.

The study also looked at predicted genes that have decayed and appear to have lost function - so-called pseudogenes - or lack experimental verification. The control regions for almost 90% were methylated, suggesting that methylation plays a role in silencing such genes and that many of the predicted genes might also be non-functional.

In 70% of cases, the patterns of methylation were also conserved between mouse and human tissues. Less than 5% differed to a great extent, supporting previous studies that suggest some epigenetic states to be conserved between these two species.

This stage of the HEP has defined the extent of methylation on a chromosomal scale and identified new possible roles for regions of the genome that we understand only poorly. But its importance goes beyond that.

"This is by far the most comprehensive study in understanding epigenetic differences," commented Professor Peter Jones, Director at the University of Southern California/Norris Comprehensive Cancer Center and a member of the Advisory Board of Epigenomics AG. "It is a breakthrough: we now have a sense of chromosome-wide epigenetics and this study shows what can be done to unravel this complex and clinically important process.

"The achievements serve to emphasize the need for genome-wide analysis of epigenetics - not only the study of methylation differences of DNA but also of chromatin changes. We know from individual studies that these changes are important in some diseases and we need now to establish a comprehensive study programme. The recently initiated international Alliance for Human Epigenomics and Disease (AHEAD) project by the American Association for Cancer Research can be expected to be invaluable for our understanding how genomes function and to take us toward a truly integrated (epi)genetic approach to common disease."

Don Powell | alfa
Further information:
http://www.sanger.ac.uk

Further reports about: Chromosome DNA genetic marker methylation

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>