Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Towards a Global Map of Epigenetic Variation Human Epigenome Project generates DNA methylation profiles of three chromosomes

A new DNA map, published in Nature Genetics today, provides the first large-scale study of biological inheritance in human that is not DNA-sequence based. The map of human chromosomes 6, 20 and 22 shows that as many as one in six of our human genes might be subject to modifications that could alter their activity by epigenetic changes - under the influence of the environment. Understanding these modifications will be important in diagnosis, drug development and disease study.

The epigenome is the interface of genetics and environment, where plasticity of epigenetic changes modifies the hard wiring of our genetic code. Increasingly it is thought that at this interface lie clues to how lifestyle and the environment affect our susceptibility to many diseases.

Epigenetic changes include modification of DNA bases, through addition or removal of simple chemical tags, such as a methyl group, and similar changes of the proteins that are closely entwined with DNA to form chromatin, the functional form of the genome. Collectively, these modifications are also referred to as the 'epigenetic code' which researchers believe defines how different genetic programmes can be executed from the same genome in different tissues.

To examine how and where DNA modification might vary, the team from the Wellcome Trust Sanger Institute and Epigenomics AG measured levels of DNA methylation across three chromosomes in twelve different tissues. The results, from almost two million measurements, looked for differences between tissues as well as differences that might be linked to age or sex.

... more about:
»Chromosome »DNA »genetic marker »methylation

Although DNA methylation can vary over a wide dynamic range, the study revealed the majority of sites to have on/off status (e.g. being unmethylated or methylated) and identified distinct regions in the genome where methylation differs between tissues but no significant differences were found between two age groups - average age 26 years old and average age 68 years old. Age has been suspected to influence the plastic changes in methylation, and perhaps influence disease processes, but these remarkable results suggest methylation states are more stable than previously thought. The authors do emphasize that discrete changes may occur in regions or tissues not examined here.

Moreover, the two sexes showed indistinguishable patterns of methylation of regions not on the sex chromosomes, X and Y, or part of imprinted regions which are known to have parent-of-origin specific methylation patterns. Except for those regions, the global patterns of methylation are thus the same in males and females.

"There is much less noise in the system than we feared," explained Dr Stephan Beck, Project Leader at the Wellcome Trust Sanger Institute, "Our data show DNA methylation to be stable, specific and essentially binary (that is, on or off) - all key hallmarks of informative clinical markers. Our conclusion is that epigenetic markers will be a powerful addition to the current repertoire of genetic markers for future disease association studies, particularly where non-genetic factors are known to play a role, for example in cancer, and where they are suspected, as in autoimmune disease."

Analysis of the global epigenetic landscape revealed methylation to be tissue- and cell-type specific with sperm showing the greatest difference (up to 20%) when compared to other cell types, emphasizing the extensive epigenetic reprogramming during gametogenesis.

The team found that tissue-specific methylation of one in three genes they studied was associated with changed levels of gene activity. Intriguingly, tissue-specific differences were enriched in regions called evolutionary conserved regions (ECRs), lying distant from genes, out in the 'junk' DNA. ECRs were more often differentially methylated than regions close to genes, suggesting they might have an undiscovered role in gene or chromosome activity.

The study also looked at predicted genes that have decayed and appear to have lost function - so-called pseudogenes - or lack experimental verification. The control regions for almost 90% were methylated, suggesting that methylation plays a role in silencing such genes and that many of the predicted genes might also be non-functional.

In 70% of cases, the patterns of methylation were also conserved between mouse and human tissues. Less than 5% differed to a great extent, supporting previous studies that suggest some epigenetic states to be conserved between these two species.

This stage of the HEP has defined the extent of methylation on a chromosomal scale and identified new possible roles for regions of the genome that we understand only poorly. But its importance goes beyond that.

"This is by far the most comprehensive study in understanding epigenetic differences," commented Professor Peter Jones, Director at the University of Southern California/Norris Comprehensive Cancer Center and a member of the Advisory Board of Epigenomics AG. "It is a breakthrough: we now have a sense of chromosome-wide epigenetics and this study shows what can be done to unravel this complex and clinically important process.

"The achievements serve to emphasize the need for genome-wide analysis of epigenetics - not only the study of methylation differences of DNA but also of chromatin changes. We know from individual studies that these changes are important in some diseases and we need now to establish a comprehensive study programme. The recently initiated international Alliance for Human Epigenomics and Disease (AHEAD) project by the American Association for Cancer Research can be expected to be invaluable for our understanding how genomes function and to take us toward a truly integrated (epi)genetic approach to common disease."

Don Powell | alfa
Further information:

Further reports about: Chromosome DNA genetic marker methylation

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>