Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a Global Map of Epigenetic Variation Human Epigenome Project generates DNA methylation profiles of three chromosomes

30.10.2006
A new DNA map, published in Nature Genetics today, provides the first large-scale study of biological inheritance in human that is not DNA-sequence based. The map of human chromosomes 6, 20 and 22 shows that as many as one in six of our human genes might be subject to modifications that could alter their activity by epigenetic changes - under the influence of the environment. Understanding these modifications will be important in diagnosis, drug development and disease study.

The epigenome is the interface of genetics and environment, where plasticity of epigenetic changes modifies the hard wiring of our genetic code. Increasingly it is thought that at this interface lie clues to how lifestyle and the environment affect our susceptibility to many diseases.

Epigenetic changes include modification of DNA bases, through addition or removal of simple chemical tags, such as a methyl group, and similar changes of the proteins that are closely entwined with DNA to form chromatin, the functional form of the genome. Collectively, these modifications are also referred to as the 'epigenetic code' which researchers believe defines how different genetic programmes can be executed from the same genome in different tissues.

To examine how and where DNA modification might vary, the team from the Wellcome Trust Sanger Institute and Epigenomics AG measured levels of DNA methylation across three chromosomes in twelve different tissues. The results, from almost two million measurements, looked for differences between tissues as well as differences that might be linked to age or sex.

... more about:
»Chromosome »DNA »genetic marker »methylation

Although DNA methylation can vary over a wide dynamic range, the study revealed the majority of sites to have on/off status (e.g. being unmethylated or methylated) and identified distinct regions in the genome where methylation differs between tissues but no significant differences were found between two age groups - average age 26 years old and average age 68 years old. Age has been suspected to influence the plastic changes in methylation, and perhaps influence disease processes, but these remarkable results suggest methylation states are more stable than previously thought. The authors do emphasize that discrete changes may occur in regions or tissues not examined here.

Moreover, the two sexes showed indistinguishable patterns of methylation of regions not on the sex chromosomes, X and Y, or part of imprinted regions which are known to have parent-of-origin specific methylation patterns. Except for those regions, the global patterns of methylation are thus the same in males and females.

"There is much less noise in the system than we feared," explained Dr Stephan Beck, Project Leader at the Wellcome Trust Sanger Institute, "Our data show DNA methylation to be stable, specific and essentially binary (that is, on or off) - all key hallmarks of informative clinical markers. Our conclusion is that epigenetic markers will be a powerful addition to the current repertoire of genetic markers for future disease association studies, particularly where non-genetic factors are known to play a role, for example in cancer, and where they are suspected, as in autoimmune disease."

Analysis of the global epigenetic landscape revealed methylation to be tissue- and cell-type specific with sperm showing the greatest difference (up to 20%) when compared to other cell types, emphasizing the extensive epigenetic reprogramming during gametogenesis.

The team found that tissue-specific methylation of one in three genes they studied was associated with changed levels of gene activity. Intriguingly, tissue-specific differences were enriched in regions called evolutionary conserved regions (ECRs), lying distant from genes, out in the 'junk' DNA. ECRs were more often differentially methylated than regions close to genes, suggesting they might have an undiscovered role in gene or chromosome activity.

The study also looked at predicted genes that have decayed and appear to have lost function - so-called pseudogenes - or lack experimental verification. The control regions for almost 90% were methylated, suggesting that methylation plays a role in silencing such genes and that many of the predicted genes might also be non-functional.

In 70% of cases, the patterns of methylation were also conserved between mouse and human tissues. Less than 5% differed to a great extent, supporting previous studies that suggest some epigenetic states to be conserved between these two species.

This stage of the HEP has defined the extent of methylation on a chromosomal scale and identified new possible roles for regions of the genome that we understand only poorly. But its importance goes beyond that.

"This is by far the most comprehensive study in understanding epigenetic differences," commented Professor Peter Jones, Director at the University of Southern California/Norris Comprehensive Cancer Center and a member of the Advisory Board of Epigenomics AG. "It is a breakthrough: we now have a sense of chromosome-wide epigenetics and this study shows what can be done to unravel this complex and clinically important process.

"The achievements serve to emphasize the need for genome-wide analysis of epigenetics - not only the study of methylation differences of DNA but also of chromatin changes. We know from individual studies that these changes are important in some diseases and we need now to establish a comprehensive study programme. The recently initiated international Alliance for Human Epigenomics and Disease (AHEAD) project by the American Association for Cancer Research can be expected to be invaluable for our understanding how genomes function and to take us toward a truly integrated (epi)genetic approach to common disease."

Don Powell | alfa
Further information:
http://www.sanger.ac.uk

Further reports about: Chromosome DNA genetic marker methylation

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>