Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse DNA to aid biomedical research

Researchers announced today that they have successfully resequenced the DNA of 15 mouse strains most commonly used in biomedical research.

More than 8.3 million single nucleotide polymorphisms (SNPs) were discovered among the genomes of the 15 mouse strains and the data are now publicly available. These new data will help researchers better understand complex genetic traits, such as why some individuals are more susceptible to certain diseases, and will serve as a valuable resource in determining how environmental agents influence the development of disease.

Single Nucleotide Polymorphisms, or SNPs (known as "snips"), are single genetic changes, or variations, that can occur within a DNA sequence. Because mice and humans share many of the same fundamental biological and behavioral processes, including gene functions, these data will help researchers understand human genetic susceptibility to almost 200 diseases such as Parkinson's, cancer, diabetes, heart and lung diseases, reproductive diseases, and asthma and other childhood diseases, which are affected by exposure to environmental substances.

"Making this wealth of data freely available to the research community is a significant milestone," said David A. Schwartz. M.D., director of the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, which funded the research. "Each mouse strain is genetically unique. Now that we know the DNA variations for these mouse strains, we can compare the genetic makeup of one strain that acquires a certain disease to another strain that does not get the same disease. In this way researchers gain insight into the same processes that may cause one human to get a disease while another human in the same environment remains disease-free."

... more about:
»DNA »Perlegen »SNP »Variation »strain

The "Resequencing and SNP Discovery Project" began less than two years ago through a contract between the National Toxicology Program at NIEHS and Perlegen Sciences, Inc. of Mountain View CA. Perlegen scientists conducted the project using as a standard reference the 2003 DNA sequencing of the C57BL/6J mouse strain -- the very first mouse strain to undergo DNA sequencing. The mouse models included in the resequencing project are: 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T+ tf/J, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, KK/HlJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ. The 15 mouse strains were carefully chosen because of their routine use as research models and their genetic diversity. The project used the same high-density oligonucleotide array technology that was used to discover common DNA variation in the human genome.

"Perlegen Sciences was excited to perform this scientific work, because it promised to provide an extremely valuable resource. We believe the data will generate a lot of knowledge about complex genetic traits," said Kelly Frazer, Vice President of Genomics at Perlegen Sciences, Inc.

"This project was highly anticipated by scientists. Now, we can go to our computer, click on the mouse strain we want to use, see the sequence variations for that strain and compare it to the others," said David Threadgill, Ph.D., an expert in mouse models of disease at the University of North Carolina, Chapel Hill. "If we use multiple strains, we can then look at the data after the animals are exposed to an environmental substance and compare the genetic differences between the strains that acquired a disease and those that did not. This will help us begin to identify causes of differential susceptibility to disease."

"These mouse data will aid in our understanding of 'counterpart' genes in humans, the corresponding molecular and biological pathways the lead to disease susceptibility, and the environmental agents that trigger the development of disease in susceptible people," said David Christiani, M.D., Professor of Medicine at Harvard Medical School and Professor of Occupational Medicine and Epidemiology at Harvard School of Public Health. "The data will also be a great resource for pharmaceutical companies that are developing new treatments for disease."

Robin Mackar | EurekAlert!
Further information:

Further reports about: DNA Perlegen SNP Variation strain

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>