Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse DNA to aid biomedical research

27.10.2006
Researchers announced today that they have successfully resequenced the DNA of 15 mouse strains most commonly used in biomedical research.

More than 8.3 million single nucleotide polymorphisms (SNPs) were discovered among the genomes of the 15 mouse strains and the data are now publicly available. These new data will help researchers better understand complex genetic traits, such as why some individuals are more susceptible to certain diseases, and will serve as a valuable resource in determining how environmental agents influence the development of disease.

Single Nucleotide Polymorphisms, or SNPs (known as "snips"), are single genetic changes, or variations, that can occur within a DNA sequence. Because mice and humans share many of the same fundamental biological and behavioral processes, including gene functions, these data will help researchers understand human genetic susceptibility to almost 200 diseases such as Parkinson's, cancer, diabetes, heart and lung diseases, reproductive diseases, and asthma and other childhood diseases, which are affected by exposure to environmental substances.

"Making this wealth of data freely available to the research community is a significant milestone," said David A. Schwartz. M.D., director of the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, which funded the research. "Each mouse strain is genetically unique. Now that we know the DNA variations for these mouse strains, we can compare the genetic makeup of one strain that acquires a certain disease to another strain that does not get the same disease. In this way researchers gain insight into the same processes that may cause one human to get a disease while another human in the same environment remains disease-free."

... more about:
»DNA »Perlegen »SNP »Variation »strain

The "Resequencing and SNP Discovery Project" began less than two years ago through a contract between the National Toxicology Program at NIEHS and Perlegen Sciences, Inc. of Mountain View CA. Perlegen scientists conducted the project using as a standard reference the 2003 DNA sequencing of the C57BL/6J mouse strain -- the very first mouse strain to undergo DNA sequencing. The mouse models included in the resequencing project are: 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T+ tf/J, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, KK/HlJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ. The 15 mouse strains were carefully chosen because of their routine use as research models and their genetic diversity. The project used the same high-density oligonucleotide array technology that was used to discover common DNA variation in the human genome.

"Perlegen Sciences was excited to perform this scientific work, because it promised to provide an extremely valuable resource. We believe the data will generate a lot of knowledge about complex genetic traits," said Kelly Frazer, Vice President of Genomics at Perlegen Sciences, Inc.

"This project was highly anticipated by scientists. Now, we can go to our computer, click on the mouse strain we want to use, see the sequence variations for that strain and compare it to the others," said David Threadgill, Ph.D., an expert in mouse models of disease at the University of North Carolina, Chapel Hill. "If we use multiple strains, we can then look at the data after the animals are exposed to an environmental substance and compare the genetic differences between the strains that acquired a disease and those that did not. This will help us begin to identify causes of differential susceptibility to disease."

"These mouse data will aid in our understanding of 'counterpart' genes in humans, the corresponding molecular and biological pathways the lead to disease susceptibility, and the environmental agents that trigger the development of disease in susceptible people," said David Christiani, M.D., Professor of Medicine at Harvard Medical School and Professor of Occupational Medicine and Epidemiology at Harvard School of Public Health. "The data will also be a great resource for pharmaceutical companies that are developing new treatments for disease."

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov

Further reports about: DNA Perlegen SNP Variation strain

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>