Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse DNA to aid biomedical research

27.10.2006
Researchers announced today that they have successfully resequenced the DNA of 15 mouse strains most commonly used in biomedical research.

More than 8.3 million single nucleotide polymorphisms (SNPs) were discovered among the genomes of the 15 mouse strains and the data are now publicly available. These new data will help researchers better understand complex genetic traits, such as why some individuals are more susceptible to certain diseases, and will serve as a valuable resource in determining how environmental agents influence the development of disease.

Single Nucleotide Polymorphisms, or SNPs (known as "snips"), are single genetic changes, or variations, that can occur within a DNA sequence. Because mice and humans share many of the same fundamental biological and behavioral processes, including gene functions, these data will help researchers understand human genetic susceptibility to almost 200 diseases such as Parkinson's, cancer, diabetes, heart and lung diseases, reproductive diseases, and asthma and other childhood diseases, which are affected by exposure to environmental substances.

"Making this wealth of data freely available to the research community is a significant milestone," said David A. Schwartz. M.D., director of the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health, which funded the research. "Each mouse strain is genetically unique. Now that we know the DNA variations for these mouse strains, we can compare the genetic makeup of one strain that acquires a certain disease to another strain that does not get the same disease. In this way researchers gain insight into the same processes that may cause one human to get a disease while another human in the same environment remains disease-free."

... more about:
»DNA »Perlegen »SNP »Variation »strain

The "Resequencing and SNP Discovery Project" began less than two years ago through a contract between the National Toxicology Program at NIEHS and Perlegen Sciences, Inc. of Mountain View CA. Perlegen scientists conducted the project using as a standard reference the 2003 DNA sequencing of the C57BL/6J mouse strain -- the very first mouse strain to undergo DNA sequencing. The mouse models included in the resequencing project are: 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T+ tf/J, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, KK/HlJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ. The 15 mouse strains were carefully chosen because of their routine use as research models and their genetic diversity. The project used the same high-density oligonucleotide array technology that was used to discover common DNA variation in the human genome.

"Perlegen Sciences was excited to perform this scientific work, because it promised to provide an extremely valuable resource. We believe the data will generate a lot of knowledge about complex genetic traits," said Kelly Frazer, Vice President of Genomics at Perlegen Sciences, Inc.

"This project was highly anticipated by scientists. Now, we can go to our computer, click on the mouse strain we want to use, see the sequence variations for that strain and compare it to the others," said David Threadgill, Ph.D., an expert in mouse models of disease at the University of North Carolina, Chapel Hill. "If we use multiple strains, we can then look at the data after the animals are exposed to an environmental substance and compare the genetic differences between the strains that acquired a disease and those that did not. This will help us begin to identify causes of differential susceptibility to disease."

"These mouse data will aid in our understanding of 'counterpart' genes in humans, the corresponding molecular and biological pathways the lead to disease susceptibility, and the environmental agents that trigger the development of disease in susceptible people," said David Christiani, M.D., Professor of Medicine at Harvard Medical School and Professor of Occupational Medicine and Epidemiology at Harvard School of Public Health. "The data will also be a great resource for pharmaceutical companies that are developing new treatments for disease."

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov

Further reports about: DNA Perlegen SNP Variation strain

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>