Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify 36 genes, 100 neuropeptides in honey bee brains

27.10.2006
From humans to honey bees, neuropeptides control brain activity and, hence, our behaviors. Understanding the roles these peptides play in the life of a honey bee will assist researchers in understanding the roles they play in their human counterparts.

There are a million neurons in the brain of a honey bee (Apis mellifera), a brain not much larger than the size of the period at the end of this sentence. The activities of these neurons are influenced by the sea of peptides they are bathed in.

"Neuropeptides undoubtedly play a role in the bees' shift from working in the hive to foraging, displaying and interpreting dance language, and in defending the hive," said Jonathan Sweedler, a William H. and Janet Lycan Professor of Chemistry and the director of the Roy J. Carver Biotechnology Center at the University of Illinois at Urbana-Champaign.

"To use the honey bee as a model for sociogenomics, and to link molecular information to neurochemical and physiological data, we first must know the identities of the peptides used in the brain and the genes they are encoded by," Sweedler said.

... more about:
»Genome »Neuropeptide »Peptide »Sweedler »sequence

Using a combination of the newly available honey bee genome sequence, as well as bioinformatics and mass spectrometry, Sweedler and collaborators from the United States and Belgium inferred the sequences of more than 200 possible neuropeptides and confirmed the sequences of 100 neuropeptides from the brain of the honey bee.

"This study lays the groundwork for future molecular studies of honey bee neuropeptides with the identification of 36 genes, 33 of which were previously unreported," the researchers write in the Oct. 27 issue of the journal Science.

"Neuropeptides come in a bewildering range of shapes and sizes, and are notoriously hard to predict from a genome alone," Sweedler said. "Even if you find a gene, it is hard to say what particular peptide it will create, because neuropeptide precursors undergo extensive post-translational processing."

Some of the neuropeptides the researchers discovered were a result of direct measurements of bee brains using an extremely sensitive mass spectrometer. Some of the genes were found because they resembled genes discovered in other species, such as the fruit fly (Drosophila melanogaster). And, because genes that produce neuropeptides often have repeating sequences, some of the genes were found by a computer algorithm that scanned the honey bee genome for such telltale sequences.

"We found 36 genes, from which we detected 100 peptides by mass spectrometry," said Sweedler, who also is a researcher at the university's Beckman Institute for Advanced Science and Technology and an affiliate of the university's Institute for Genomic Biology. "By combining other techniques, from bioinformatics to proteomics, we inferred an additional 100 peptides."

Some of the inferred peptides may not have been measured because they were present at too low a level to be detected, Sweedler said. Others may have been missed because they are present only during particular developmental stages. Future work will no doubt find and confirm more of the brain's peptides.

"The potential of our blended technology approach to facilitate discovery of these peptides is not only significant for advancing honey bee research," the researchers wrote, "it demonstrates promise for neuropeptide discovery in the large number of other new genomes currently being sequenced."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Genome Neuropeptide Peptide Sweedler sequence

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>