Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify 36 genes, 100 neuropeptides in honey bee brains

27.10.2006
From humans to honey bees, neuropeptides control brain activity and, hence, our behaviors. Understanding the roles these peptides play in the life of a honey bee will assist researchers in understanding the roles they play in their human counterparts.

There are a million neurons in the brain of a honey bee (Apis mellifera), a brain not much larger than the size of the period at the end of this sentence. The activities of these neurons are influenced by the sea of peptides they are bathed in.

"Neuropeptides undoubtedly play a role in the bees' shift from working in the hive to foraging, displaying and interpreting dance language, and in defending the hive," said Jonathan Sweedler, a William H. and Janet Lycan Professor of Chemistry and the director of the Roy J. Carver Biotechnology Center at the University of Illinois at Urbana-Champaign.

"To use the honey bee as a model for sociogenomics, and to link molecular information to neurochemical and physiological data, we first must know the identities of the peptides used in the brain and the genes they are encoded by," Sweedler said.

... more about:
»Genome »Neuropeptide »Peptide »Sweedler »sequence

Using a combination of the newly available honey bee genome sequence, as well as bioinformatics and mass spectrometry, Sweedler and collaborators from the United States and Belgium inferred the sequences of more than 200 possible neuropeptides and confirmed the sequences of 100 neuropeptides from the brain of the honey bee.

"This study lays the groundwork for future molecular studies of honey bee neuropeptides with the identification of 36 genes, 33 of which were previously unreported," the researchers write in the Oct. 27 issue of the journal Science.

"Neuropeptides come in a bewildering range of shapes and sizes, and are notoriously hard to predict from a genome alone," Sweedler said. "Even if you find a gene, it is hard to say what particular peptide it will create, because neuropeptide precursors undergo extensive post-translational processing."

Some of the neuropeptides the researchers discovered were a result of direct measurements of bee brains using an extremely sensitive mass spectrometer. Some of the genes were found because they resembled genes discovered in other species, such as the fruit fly (Drosophila melanogaster). And, because genes that produce neuropeptides often have repeating sequences, some of the genes were found by a computer algorithm that scanned the honey bee genome for such telltale sequences.

"We found 36 genes, from which we detected 100 peptides by mass spectrometry," said Sweedler, who also is a researcher at the university's Beckman Institute for Advanced Science and Technology and an affiliate of the university's Institute for Genomic Biology. "By combining other techniques, from bioinformatics to proteomics, we inferred an additional 100 peptides."

Some of the inferred peptides may not have been measured because they were present at too low a level to be detected, Sweedler said. Others may have been missed because they are present only during particular developmental stages. Future work will no doubt find and confirm more of the brain's peptides.

"The potential of our blended technology approach to facilitate discovery of these peptides is not only significant for advancing honey bee research," the researchers wrote, "it demonstrates promise for neuropeptide discovery in the large number of other new genomes currently being sequenced."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Genome Neuropeptide Peptide Sweedler sequence

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>