Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic analysis forces re-draw of insect family tree

27.10.2006
The family tree covering almost half the animal species on the planet has been re-drawn following a genetic analysis which has revealed new relationships between four major groups of insects.

Scientists have found that flies and moths are most closely related to beetles and more distantly related to bees and wasps, contrary to previous theory.

The findings are published in the special Honey Bee Genome issue of the journal Genome Research which coincides with Nature's publication of the honey bee genome sequence (also Thursday 26 October 2006).

The results are based on an analysis of the same 185 genes found in the genomes of eight different insect families, which together represent 45 per cent of all known animal species.

... more about:
»Analysis »Genetic »distantly »moth »species

This enabled the international group of scientists to work out the evolutionary relationships between the insects based on changes and mutations within those genes.

Previously scientists had assumed that flies and moths were most closely related to bees and wasps, with beetles more distantly related to these groups.

This new family arrangement also brings the different species of social insects, such as termites and bees, closer together - suggesting that the ability of insects to cooperate in social groupings may have evolved just once, rather than independently in several different species.

“About half of all animal species belong to just four groups of insects but, surprisingly, we never knew for sure how they are related to each other,” said Dr Martin Lercher from the University of Bath, who lead the research.

“While there was never unequivocal evidence for it, scientists believed for a long time that, based on morphology, flies and moths were most closely related to bees, with beetles more distantly related to these three groups.

“By comparing genetic information from 185 genes that were sequenced in species from all of these groups, we found that in fact flies and moths are most closely related to beetles, and more distantly related to bees.

“This sheds new light on a large number of evolutionary questions, as a correct understanding of the evolutionary relationships is fundamental to any interpretation of similarities or differences among species.

“For example, social colonies are common among bees and wasps and their relatives, ants, as well as among more distantly related insects, such as termites and aphids.

“That beetles don't show this tendency, known as eusociality, has been interpreted as a sign that eusociality has evolved several times independently.

“Now that we know that bees, wasps and ants are in fact the closest relatives to the more distantly related (or ‘basal’) species, it appears more likely that the genetic basis for eusociality may have evolved only once, and was lost in the common ancestor of beetles, moths, and flies.”

The researchers used the genomes of six different insects from the holometabolous group of insects (insects which undergo complete metamorphosis): fruit fly (Drosophila melanogaster), mosquito (Anopheles gambiae), silk moth (Bombyx mori), flour beetle (Tribolium castaneum), honey bee (Apis mellifera) and sibling parasitic wasp species (Nasonia vitripennis and Nasonia giraulti).

These insects represent the four major orders of holometabolous insects, beetles (Coleoptera), moths (Lepidoptera), flies (Diptera) and bees and wasps (Hymenoptera), which together represent 45 per cent of the animal species on earth.

They also included one orthopteran (the grasshopper Locusta migratoria) and one hemipteran (the pea aphid Acyrthosiphon pisum), both of which are uncontested out-groups to the holometabolous insects.

The researchers are from the University of Cologne (Germany), Baylor College of Medicine (USA), University of Rochester (USA), the Institute for Genomic Research (USA), the University of Bath (UK) and the European Molecular Biology Laboratory (Germany).

The research was funded by the Human Frontier Science Program Organization, the Deutsche Forschungsgemeinschaft (DFG), the Royal Society and the 21st Century Research & Technology Fund.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk
http://www.bath.ac.uk/news/articles/releases/insecttree231006.html

Further reports about: Analysis Genetic distantly moth species

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>