Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Honey bee genome holds clues to social behavior

26.10.2006
By studying the humble honey bee, researchers at the University of Illinois at Urbana-Champaign have come a step closer to understanding the molecular basis of social behavior in humans.

"The honey bee (Apis millifera) has been called a model system for social behavior," said Saurabh (pronounced SAW-rub) Sinha, a professor of computer science and an affiliate of the university's Institute for Genomic Biology. Using that model system, Sinha led a team that searched the honey bee genome for clues for social cues – a form of bee pressure that can cause bees to change jobs in response to needs of the hive.

"We want to learn how the honey bee society influences behavior in individual honey bees," said Sinha, who is lead author of a paper that will be posted online this week ahead of regular publication by the Proceedings of the National Academy of Sciences. "By studying the social regulation of gene expression, we hope to extrapolate the biology to humans."

Adult worker bees perform a number of tasks in the hive when they are young, such as caring for eggs and larvae, and then shift to foraging for nectar and pollen as they age. However, if the hive has a shortage of foragers, some of the young nurse bees will switch jobs and become foragers.

... more about:
»Genome »Sinha »Social »transcription factors

The job transition, whether triggered by age or social cues, involves changes in thousands of genes in the honey bee brain; some genes turn on, while others turn off.

Genes are switched on and off by short strings of DNA that lie close to the gene. The strings serve as binding sites for particular molecules, called transcription factors. For example, when the correct transcription factor latches into the binding site, the gene may be switched on. If the transcription factor breaks away from the binding site, the gene is switched off.

To search for genes that might play a role in social behavior, Sinha and his colleagues used the newly sequenced honey bee genome to scan the binding sites of transcription factors known to function in the development of fruit flies (Drosophila melanogaster) from a single cell to an adult.

A computer algorithm written by the researchers scanned nearly 3,000 genes. Statistical techniques were then used to investigate whether particular transcription factors correlated with genes that were differentially expressed (turned on or off) between nurse bees and foragers.

"We found five different transcription factors that showed a statistically significant correlation with socially regulated genes," Sinha said. "It appears that genes involved in nervous-system development in fruit flies are re-used by nature for behavioral functions in adult honey bees."

Their findings, Sinha said, suggest that honey bees will be useful in elucidating the mechanisms by which social factors regulate gene expression in brains, including those of humans.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: Genome Sinha Social transcription factors

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>