Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological clock of honey bee more similar to humans than to insects

26.10.2006
Groundbreaking research undertaken by a group headed by Dr. Guy Bloch of the Alexander Silberman Institute of Life Sciences at the Hebrew University of Jerusalem has found that the molecular structure of the biological clock of the honey bee is more similar to the biological clock of mammals than to that of flies.

The research identified and characterized the key genes involved in the biological clock of bees. The findings of the research will be published on Oct. 26 in an article describing the honey bee genome sequence in Nature and in a companion paper in Genome Research.

The biological clock is an internal system in the bodies of living creatures that creates circadian rhythms, derived from the Latin expression circa dies that means "about one day." The critical role of the circadian clock stems from its influence on many processes, such as time of alertness and fatigue, activity rhythms, cyclic changes in body temperature and the secretion of hormones.

Bees rely on the biological clock for timing visits to flowers when nectar and pollen flow is at its highest. They can learn to reach flowers at nine different points of time during the day within an accuracy of about 20 minutes. The clock is also essential for navigation that uses the sun as a compass because the sun moves during the day from east to west. Bees, whose bodies are slightly longer than one centimeter, precisely navigate to flowers situated as far as 10 km from their beehive.

... more about:
»biological clock »circadian »clock »insects »rhythm

The central biological clock is located in the brain and is made up of groups of “clock cells,” each of which is capable of creating a circadian rhythm independently. These circadian rhythms are generated by complex interactions between "clock genes" that accumulate in the cells and eventually close a cycle of about 24 hours when they shut down their own production. The genes which were isolated by Dr. Bloch and his research team are responsible for this process in bees.

The research of Dr. Bloch and his team is part of a worldwide project for mapping the honey bee genome (similar to the human genome project which was completed several years ago). According to Dr. Bloch, "Discovering that molecular characteristics of the biological clock in bees is closer to the biological clock of mammals than that of flies was a big surprise, since previously it had been thought that there is one type of clock that is typical of insects and another typical of mammals. These results change our understanding of the evolution of circadian clocks."

Dr. Bloch points out that the discovery raises many additional questions concerning the evolution of biological clocks and the significance of differences in the organization of the clock in different creatures. For example, why is the clock of bees closer to humans than that of flies? Is the similarity between bees and mammals related to the behavioral complexity of bees? How did the clock of ancestral insects work: was it more similar to that of bees or flies?

Characterization of the genes in the clock of the bee opens up new directions of research concerning the understanding of the molecular base of complex behaviors, such as sun-compass navigation, time sensing, flexibility in circadian rhythms, and social regulation of the circadian clock.

Another reason that research on the evolution and function of clock genes is important is that these genes are involved in a variety of illnesses, such as mental disturbances, alcoholism, problems of overweight and drug addition, as well as in processes relating to aging.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

Further reports about: biological clock circadian clock insects rhythm

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>