Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes gene carries similar risk to obesity

25.10.2006
Carrying two copies of a common variant of a particular gene doubles your chances of developing diabetes and puts you in a similar risk category to being clinically obese, according to a collaborative study led by UCL (University College London) researchers.

The collaborative team led by UCL Professor Steve Humphries studied the TCF7L2 gene, which was discovered to be implicated in diabetes earlier this year by a group working in Iceland. The new study followed healthy middle-aged men in the UK for 15 years, and found that carrying a common variant of the gene increased their risk of developing diabetes by 50 per cent. Carrying two copies of the variant gene increased the risk two-fold, to nearly 100 per cent. In the population as a whole, the impact of this gene on the risk of developing diabetes is as big as the problem of being clinically obese (having a body mass index over 30).

The study, published in the Journal of Molecular Medicine, also looked at White, Indian-Asian and Afro-Caribbean diabetes patients and found that the risk for carriers of the gene was essentially the same across all groups.

Professor Steve Humphries, of the UCL Centre for Cardiovascular Genetics, said: "Although being overweight is the major risk factor for developing diabetes, it is now becoming clear that an individual's genetic makeup has a big impact on whether or not they are going to develop diabetes.

... more about:
»Genetic »Men »Risk »TCF7L2 »factor

"This is the first study that has followed healthy men and shown that carrying this risk gene has such a big effect. Because it is so common, and because the risk is so high, this gene seems to be causing as many cases of diabetes in the UK as obesity, which we know is the biggest risk factor.

"Our findings point to a whole new genetic mechanism which could be putting people at high risk of diabetes, and this needs to be explored. If we could understand more about this pathway, it could be possible to develop completely new treatment methods.

"In future it might be possible to use this genetic information to identify those at high risk, but the most important things to do to avoid becoming diabetic are to eat healthily, take moderate exercise and not to become overweight."

Currently, over two million people in the UK have diabetes and another 750,000 have diabetes but are unaware of it. People with diabetes are much more likely to develop heart disease and may also have other medical problems which can lead to kidney disease and blindness.

Scientists are not yet certain of the full role of the TCF7L2 gene, but it appears to be involved in switching on and off a host of other important genes, and is probably key in the pancreas (where insulin is made to control the sugar levels in the blood), as well as in fatty tissue and the gut. The actual mutation in the gene has not yet been found, and there are likely to be several different mutations acting in different people.

It is possible that this gene could become a therapeutic target, although it would be important to target TCF7L2 only in the specific tissue necessary to reduce risk of diabetes - for example, in the insulin-making cells of the pancreas. Treatment would need to be designed to avoid interfering with the gene's important functions in other tissues, which could otherwise cause unwanted side effects.

In terms of genetic screening, it might be useful in the future to include this gene in a panel of other genes that have important effects on risk of diabetes, if people carrying TCF7L2 variants were found to need a certain drug. Such an approach is already being piloted in a form of diabetes that starts in early adulthood (MODY), where different genes cause the disease and require different treatments.

Dr Angela Wilson, Director of Research at Diabetes UK which partly funded the study, said: "The findings of this research are very exciting, as Type 2 diabetes results from a complex mix of genetic and lifestyle factors.

"If we can improve our understanding as to why people with certain genes are more likely to develop diabetes, it will help us to find ways to identify those at risk with a view to enabling them to take preventative action by adopting a healthy diet, becoming active and ensuring they do not become overweight - which is a major risk factor for diabetes.

"It also opens up new avenues of research which have the potential to lead to new treatments for people with diabetes."

Susan Carnell | EurekAlert!
Further information:
http://www.ucl.ac.uk

Further reports about: Genetic Men Risk TCF7L2 factor

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>