Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find a key to immune system's ability to remember

25.10.2006
The human immune system is a peerless memory bank.

Its ability to accurately catalog and recall long past encounters with viruses, bacteria and other pathogens is why we only get the measles or chicken pox once, and is why exposure to deactivated virus particles in vaccines confers protection from disease.

But how that memory system works -- how it acts at the finest level of detail to thwart the pathogens that invade our bodies -- is not well understood. Now, however, an international team of scientists has ferreted out an important clue to how the key cells of the immune system are able to remember old foes and quickly mount a response to hold them at bay.

Writing this week (Oct. 23, 2006) in the Proceedings of the National Academy of Sciences (PNAS), a team of researchers led by University of Wisconsin-Madison researcher Marulasiddappa Suresh identify the role of a protein that is important in stimulating the cells of the immune system, whose role is to take quick and effective action when agents of disease reinvade the body.

... more about:
»Pathogen »T cells »encounter »immune system

"We have found at least a part of how the immune system remembers its encounters," says Suresh, a professor of pathobiological sciences in the UW-Madison School of Veterinary Medicine. "We now know one of the reasons why we get such a quick (immune) response" when we are exposed to pathogens we've experienced before.

The new insight is important not only because it sheds light on the biochemical intricacies of immune system memory, but also because it may one day aid in the development of vaccines against infections like AIDS, and help victims of autoimmune diseases and transplant patients whose immune systems reject donor organs.

The protein, which scientists call Lck, is essential for immune system T cells -- white blood cells that attack virus-infected cells, foreign cells and cancer cells -- to cement the memory induced by cell surface sensors known as antigen receptors that act to identify the signatures of pathogens like measles virus and HIV, agents that hide inside cells.

Lck is important in helping "naive" T cells -- those cells that have never been exposed to a particular pathogen -- capture the receptor template of the invading agent and store it for future reference. Among the millions of naïve T cells, there are a few that are primed for active duty against an individual infectious agent. Following infection or vaccination, Lck initiates a biochemical chain of events that vastly increases the number of T cells that march off to combat the invader.

After the infection subsides, the number of T cells marshaled to fight that agent decreases dramatically. But a smaller subset, known as "memory" cells, retains the imprint of its previous encounter should the pathogen make a return appearance.

According to the study, while Lck primes naïve cells to fight a pathogen, it is not required by memory cells, which initiate the fast and furious response when that same pathogen comes calling again years later. Unlike naïve T cells, which are confined to the lymphatic system, memory T cells are found everywhere in the body, enabling them to sense and react more quickly when an infectious agent is reencountered.

"Now we know one of the reasons we get such a quick response and clearance (of the pathogen) with reinfection," Suresh explains. "If you increase the size of your army, you can clear your enemies faster. The memory T cells are greater in number and they are more potent."

The new insight could help refine therapeutic targets to treat autoimmune diseases and may inform new strategies for suppressing T cell response after transplantation. Now, transplant patients require life-long regimens of drugs to suppress immune response to the foreign cells in the donated organ.

Marulasiddappa Suresh | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: Pathogen T cells encounter immune system

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>