Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find a key to immune system's ability to remember

25.10.2006
The human immune system is a peerless memory bank.

Its ability to accurately catalog and recall long past encounters with viruses, bacteria and other pathogens is why we only get the measles or chicken pox once, and is why exposure to deactivated virus particles in vaccines confers protection from disease.

But how that memory system works -- how it acts at the finest level of detail to thwart the pathogens that invade our bodies -- is not well understood. Now, however, an international team of scientists has ferreted out an important clue to how the key cells of the immune system are able to remember old foes and quickly mount a response to hold them at bay.

Writing this week (Oct. 23, 2006) in the Proceedings of the National Academy of Sciences (PNAS), a team of researchers led by University of Wisconsin-Madison researcher Marulasiddappa Suresh identify the role of a protein that is important in stimulating the cells of the immune system, whose role is to take quick and effective action when agents of disease reinvade the body.

... more about:
»Pathogen »T cells »encounter »immune system

"We have found at least a part of how the immune system remembers its encounters," says Suresh, a professor of pathobiological sciences in the UW-Madison School of Veterinary Medicine. "We now know one of the reasons why we get such a quick (immune) response" when we are exposed to pathogens we've experienced before.

The new insight is important not only because it sheds light on the biochemical intricacies of immune system memory, but also because it may one day aid in the development of vaccines against infections like AIDS, and help victims of autoimmune diseases and transplant patients whose immune systems reject donor organs.

The protein, which scientists call Lck, is essential for immune system T cells -- white blood cells that attack virus-infected cells, foreign cells and cancer cells -- to cement the memory induced by cell surface sensors known as antigen receptors that act to identify the signatures of pathogens like measles virus and HIV, agents that hide inside cells.

Lck is important in helping "naive" T cells -- those cells that have never been exposed to a particular pathogen -- capture the receptor template of the invading agent and store it for future reference. Among the millions of naïve T cells, there are a few that are primed for active duty against an individual infectious agent. Following infection or vaccination, Lck initiates a biochemical chain of events that vastly increases the number of T cells that march off to combat the invader.

After the infection subsides, the number of T cells marshaled to fight that agent decreases dramatically. But a smaller subset, known as "memory" cells, retains the imprint of its previous encounter should the pathogen make a return appearance.

According to the study, while Lck primes naïve cells to fight a pathogen, it is not required by memory cells, which initiate the fast and furious response when that same pathogen comes calling again years later. Unlike naïve T cells, which are confined to the lymphatic system, memory T cells are found everywhere in the body, enabling them to sense and react more quickly when an infectious agent is reencountered.

"Now we know one of the reasons we get such a quick response and clearance (of the pathogen) with reinfection," Suresh explains. "If you increase the size of your army, you can clear your enemies faster. The memory T cells are greater in number and they are more potent."

The new insight could help refine therapeutic targets to treat autoimmune diseases and may inform new strategies for suppressing T cell response after transplantation. Now, transplant patients require life-long regimens of drugs to suppress immune response to the foreign cells in the donated organ.

Marulasiddappa Suresh | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: Pathogen T cells encounter immune system

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>