Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killing Brain Tumors From Within: a ‘Trojan Horse’ Approach Developed by Hebrew University and German Researchers

25.10.2006
A new method for targeting malignant brain tumors through inducing the cancerous cells to “commit suicide” has been developed by a team of researchers headed by a Hebrew University of Jerusalem professor of biochemistry.

Alexander Levitzki, who is the Wolfson Family Professor of Biochemistry, his research associate, Dr. Alexei Shir, and his colleagues from the Ludwig-Maximilians University of Munich, Germany, have pioneered a technique in which a molecule containing long, double-stranded RNA is attached to epidermal growth factor (EGF) and delivered selectively to cells with an abnormally high number of epidermal growth factor receptors (EGFR).

This proliferation of EGFR is typical of certain types of cancer cells, including glioblastoma multiforme (GBM), the most lethal form of brain cancer.

The nucleic acid-EFG molecule acts as a “guided missile,” explained Prof. Levitzki, which, when injected into the blood stream, is avidly gobbled up by the multiple EGF receptors on the cancer cells, without harming normal cells. Once embedded in the tumor cells, it destroys them from within – a true “Trojan horse,” said Prof. Levitzki.

... more about:
»EGF »Hebrew University »Levitzki »Receptors

Normal cells, which possess 20 to100 less receptors for EGF, are spared, since the amount of double-stranded RNA gobbled up is insufficient to induce them to die.

The lethal RNA approach has been applied to mice in which human brain tumors were grown. The tests proved 100% effective in eliminating the tumorous growths.

An article on the work of Prof. Levitzki, along with his associate Dr. Shir and Professors Manfred Orgris and Ernst Wagner of Ludwig-Maximilians University in Munich, was published in a recent article in the journal PLOS Medicine.

Further testing is planned in a clinical setting. In the meantime, a small start-up company, Algen Biopharmaceuticals Ltd., has been established through the Hebrew University’s Yissum Technology Transfer Company to promote commercial development of the new drug. Prof. Levitzki believes that the project has great potential, especially in view of the fact that over-expression of EGF receptors is involved in over 25 % of all types of cancers. The strategy developed to combat GBM can also be applied to other types of receptors found on cancerous cells, he added.

Last year, Prof. Levitzki was named as a winner of the prestigious Wolf Prize in Medicine for his research on cancer development and treatment. His previous work has already led to successful therapy in treating leukemia and some lung cancer patients.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

Further reports about: EGF Hebrew University Levitzki Receptors

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>