Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killing Brain Tumors From Within: a ‘Trojan Horse’ Approach Developed by Hebrew University and German Researchers

25.10.2006
A new method for targeting malignant brain tumors through inducing the cancerous cells to “commit suicide” has been developed by a team of researchers headed by a Hebrew University of Jerusalem professor of biochemistry.

Alexander Levitzki, who is the Wolfson Family Professor of Biochemistry, his research associate, Dr. Alexei Shir, and his colleagues from the Ludwig-Maximilians University of Munich, Germany, have pioneered a technique in which a molecule containing long, double-stranded RNA is attached to epidermal growth factor (EGF) and delivered selectively to cells with an abnormally high number of epidermal growth factor receptors (EGFR).

This proliferation of EGFR is typical of certain types of cancer cells, including glioblastoma multiforme (GBM), the most lethal form of brain cancer.

The nucleic acid-EFG molecule acts as a “guided missile,” explained Prof. Levitzki, which, when injected into the blood stream, is avidly gobbled up by the multiple EGF receptors on the cancer cells, without harming normal cells. Once embedded in the tumor cells, it destroys them from within – a true “Trojan horse,” said Prof. Levitzki.

... more about:
»EGF »Hebrew University »Levitzki »Receptors

Normal cells, which possess 20 to100 less receptors for EGF, are spared, since the amount of double-stranded RNA gobbled up is insufficient to induce them to die.

The lethal RNA approach has been applied to mice in which human brain tumors were grown. The tests proved 100% effective in eliminating the tumorous growths.

An article on the work of Prof. Levitzki, along with his associate Dr. Shir and Professors Manfred Orgris and Ernst Wagner of Ludwig-Maximilians University in Munich, was published in a recent article in the journal PLOS Medicine.

Further testing is planned in a clinical setting. In the meantime, a small start-up company, Algen Biopharmaceuticals Ltd., has been established through the Hebrew University’s Yissum Technology Transfer Company to promote commercial development of the new drug. Prof. Levitzki believes that the project has great potential, especially in view of the fact that over-expression of EGF receptors is involved in over 25 % of all types of cancers. The strategy developed to combat GBM can also be applied to other types of receptors found on cancerous cells, he added.

Last year, Prof. Levitzki was named as a winner of the prestigious Wolf Prize in Medicine for his research on cancer development and treatment. His previous work has already led to successful therapy in treating leukemia and some lung cancer patients.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

Further reports about: EGF Hebrew University Levitzki Receptors

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>