Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity promotes cooperation among microbes

24.10.2006
Understanding how cooperation evolves and is maintained represents one of evolutionary biology's thorniest problems.

This stems from the fact that freeloading cheats will evolve to exploit any cooperative group that doesn't defend itself, leading to the breakdown of cooperation. New research using the bacterium Pseudomonas fluorescens has identified a novel mechanism that thwarts the evolution of cheats and broadens our understanding of how cooperation might be maintained in nature and human societies. The new findings are reported by Michael Brockhurst of the University of Liverpool and colleagues at the Université Montpellier and the University of Oxford in the October 24th issue of the journal Current Biology, published by Cell Press.

Bacteria are known to cooperate in a wide variety of ways, including the formation of multicellular structures called biofilms. P. fluorescens biofilms are formed when individual cells overproduce a polymer that sticks the cells together, allowing the colonization of liquid surfaces. While production of the polymer is metabolically costly to individual cells, the biofilm group benefits from the increased access to oxygen that surface colonization provides. However, cheating types rapidly evolve that live in the biofilm but don't produce the polymer. The presence of cheats weakens the biofilm, imperiling its survival by causing it to sink.

In the new work, the researchers studied the effect of short-term evolution of diversity within the biofilm on the success of cooperation. The researchers found that within biofilms, diverse cooperators evolved to use different nutrient resources, thereby reducing the competition for resources within the biofilm. The researchers then manipulated diversity within experimental biofilms and found that diverse biofilms contained fewer cheats and can produce larger groups than non-diverse biofilms. The findings indicate that, as in ecological communities, biodiversity within biofilms is beneficial--moreover, the authors point out that this is the first time that such ideas have been applied in the context of social evolution, and it represents a new way in which cooperation can survive in the face of cheating. Furthermore, the new work sheds light on how division of labor within multicellular organisms may initially have evolved in order to minimize functional redundancy among cells and to increase efficiency.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Biofilm Cooperation evolve

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>