Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal mystery of bacterial magnetism

24.10.2006
Scientists at the Naval Research Laboratory (NRL) and Purdue University have shed light on one of microbiology's most fascinating mysteries--why some bacteria are naturally magnetic. Their description of how being magnetic "helps" the bacteria is reported in the August 2006 issue of the Biophysical Journal.

Magnetic bacteria are found in a variety of aquatic environments, such as ponds and lakes. The strain of bacterium the research team studied, Magnetospirillum magneticum, was originally found in a pond in Tokyo, Japan. Magnetic bacteria typically live far below the surface, where oxygen is scarce. (They do not grow well where oxygen is plentiful.) What makes them fascinating is that they naturally grow strings of microscopic magnetic particles called magnetosomes. When placed in a magnetic field, the bacteria align like tiny swimming compass needles, a phenomenon call magnetotaxis.

The research team is using genetic engineering to create a strain of the bacteria that become magnetic only when exposed to specific toxic chemicals, with the goal of using them as living chemical sensors. As a first step, they have created a strain that cannot make magnetosomes and therefore is not magnetic. Dr. Lloyd Whitman from NRL, who led the research team, explains that "during the course of our research, we realized that nobody had ever really demonstrated that being magnetic actually helps the bacteria." "Genetic modification allowed us to directly observe differences in behavior between magnetic and non-magnetic versions of the same bacterium," adds Professor Bruce Applegate. Professor Applegate directed the genetic engineering at Purdue, with the assistance of Professor Lazlo Csonka, Dr. Lynda Perry, and Ms. Kathleen O'Connor.

In the past, scientists had suspected that being magnetic helps a bacterium find the oxygen concentrations it prefers more quickly by swimming only up and down in the earth's magnetic field rather than randomly in all directions. An analogy would be a blind-folded mountain climber searching for a specific altitude. If she only climbs straight up or down the mountain, she should find it more quickly. "But by observing how the bacteria moved away from oxygen that we added to their environment," reports Dr. McRae Smith, a member of the team while a postdoctoral researcher at NRL, "we directly measured how much magnetotaxis helps." NRL researcher Dr. Paul Sheehan adds, "by mathematically modeling their motion, we determined that being magnetic actually makes the bacteria much more sensitive to oxygen when in a magnetic field, so that they swim away from oxygen at much lower concentrations." It is as if the climber gets tired and turns around sooner when heading up the mountain, keeping her from heading too far in the wrong direction. And the stronger the magnetic field, the bigger the effect. The scientists do not yet know how the magnetic field has this affect on the bacteria, and are currently conducting additional experiments to help answer that question.

... more about:
»Magnetic »NRL »bacteria »magnetic field

What was particularly interesting to the scientists was that the affect of being magnetic was too small for them to measure in the earth's natural, but weak, magnetic field. "Therefore," concludes Dr. Whitman, "the advantage to these bacteria in nature must be very small." "But over millions of years, this very subtle advantage has somehow produced bacterial magnetism."

NRL Public Affairs | EurekAlert!
Further information:
http://www.nrl.navy.mil

Further reports about: Magnetic NRL bacteria magnetic field

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>