Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers innovative profile of enzyme that aids tumor growth

23.10.2006
Findings point toward potential new treatments for ovarian, breast cancers

"Using a combination of enzyme activity and metabolite profiling, we determined that this protein-whose function was previously unknown-serves as a key regulator of a lipid signaling network that contributes to cancer," said Benjamin F. Cravatt, a Scripps Research professor and a member of its Skaggs Institute for Chemical Biology who led the study. "The heightened expression of KIAA1363 in several cancers indicates that it may be a critical factor in tumorgenesis. In addition, network components, including KIAA1363 itself, might be considered potential diagnostic markers for ovarian cancer."

This experimental method of integrated molecular profiling used in the study should also advance the functional study of metabolic enzymes in any biological system, according to Cravatt.

To date, understanding the roles of uncharacterized enzymes in cell physiology and pathology has remained problematic. Typically, the activities of enzymes have been studied in vitro using purified protein preparations. The outcome of these test-tube studies can be difficult to translate into clear characterizations of the roles that enzymes play in living systems, where these proteins generally operate within larger metabolic networks.

... more about:
»Cravatt »KIAA1363 »metabolic »profiling

A primary advantage of metabolite profiling in natural biological systems is that it circumvents some of the most time-consuming steps that accompany in vitro enzyme analysis while generating data more directly related to their naturally occurring activities.

"Our hypothesis was that the determination of catalytic activities for enzymes like KIAA1363 could be done directly in living systems through the integrated application of profiling technologies that survey both the enzymatic proteome and its primary biochemical output, the metabolome," Cravatt said.

So, the team drew both on proteomics-the large-scale study of the structure and function of proteins-and metabolomics-the systematic study of cellular processes, specifically their small-molecule metabolite profiles-to begin to decipher the complex metabolic and signaling networks of cancer.

According to the study, one of the primary advantages of the functional proteomic technology employed (activity-based protein profiling) is that it can be used to identify inhibitors for uncharacterized enzymes like KIAA1363. Moreover, because inhibitors are screened against many enzymes in parallel, both potency and selectivity factors are assigned simultaneously.

The development of a selective inhibitor of KIAA1363 was possible due to the availability of an activity-based proteomics probe for this enzyme. Such probes are now available for many enzyme classes that participate in cell metabolism, so Cravatt suggests "a large swath of the enzyme proteome" could be addressed using the study's experimental strategy.

"The success of our study opens the door to assembling the full range of enzymes into both metabolic and signaling networks contributing to complex pathologies like cancer," Cravatt said. "This could lead to the discovery of new markers for diagnosis and targets for treatment."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Cravatt KIAA1363 metabolic profiling

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>