Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study offers innovative profile of enzyme that aids tumor growth

Findings point toward potential new treatments for ovarian, breast cancers

"Using a combination of enzyme activity and metabolite profiling, we determined that this protein-whose function was previously unknown-serves as a key regulator of a lipid signaling network that contributes to cancer," said Benjamin F. Cravatt, a Scripps Research professor and a member of its Skaggs Institute for Chemical Biology who led the study. "The heightened expression of KIAA1363 in several cancers indicates that it may be a critical factor in tumorgenesis. In addition, network components, including KIAA1363 itself, might be considered potential diagnostic markers for ovarian cancer."

This experimental method of integrated molecular profiling used in the study should also advance the functional study of metabolic enzymes in any biological system, according to Cravatt.

To date, understanding the roles of uncharacterized enzymes in cell physiology and pathology has remained problematic. Typically, the activities of enzymes have been studied in vitro using purified protein preparations. The outcome of these test-tube studies can be difficult to translate into clear characterizations of the roles that enzymes play in living systems, where these proteins generally operate within larger metabolic networks.

... more about:
»Cravatt »KIAA1363 »metabolic »profiling

A primary advantage of metabolite profiling in natural biological systems is that it circumvents some of the most time-consuming steps that accompany in vitro enzyme analysis while generating data more directly related to their naturally occurring activities.

"Our hypothesis was that the determination of catalytic activities for enzymes like KIAA1363 could be done directly in living systems through the integrated application of profiling technologies that survey both the enzymatic proteome and its primary biochemical output, the metabolome," Cravatt said.

So, the team drew both on proteomics-the large-scale study of the structure and function of proteins-and metabolomics-the systematic study of cellular processes, specifically their small-molecule metabolite profiles-to begin to decipher the complex metabolic and signaling networks of cancer.

According to the study, one of the primary advantages of the functional proteomic technology employed (activity-based protein profiling) is that it can be used to identify inhibitors for uncharacterized enzymes like KIAA1363. Moreover, because inhibitors are screened against many enzymes in parallel, both potency and selectivity factors are assigned simultaneously.

The development of a selective inhibitor of KIAA1363 was possible due to the availability of an activity-based proteomics probe for this enzyme. Such probes are now available for many enzyme classes that participate in cell metabolism, so Cravatt suggests "a large swath of the enzyme proteome" could be addressed using the study's experimental strategy.

"The success of our study opens the door to assembling the full range of enzymes into both metabolic and signaling networks contributing to complex pathologies like cancer," Cravatt said. "This could lead to the discovery of new markers for diagnosis and targets for treatment."

Keith McKeown | EurekAlert!
Further information:

Further reports about: Cravatt KIAA1363 metabolic profiling

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>