In early embryos, cilia get the message across

Now, scientists at the Salk Institute for Biological Studies take a step back and illuminate the molecular process that regulates formation of cilia in early fish embryos. In a study published in a forthcoming issue of Nature Genetics, the Salk team, led by Juan Carlos Izpisúa Belmonte, Ph.D., a professor in the Gene Expression Laboratory, identified a novel factor that links early developmental signals with the function of cilia and their role in controlling left-right specification in zebrafish.

“When we altered the function of the gene duboraya, we saw problems with cilia formation, although the gene product itself is not a part of the structure. This opens up a new area of research,” says Belmonte.

Cilia have been known to cell biologists for over a hundred years. Belmonte is convinced that these humble structures, which have until recently been ignored by physiologists and molecular biologists alike, are poised to take center stage in the field of biology. Explains Belmonte: “When you impair the function of cilia or the flow of cilia, you create substantial problems throughout the body.”

These simple, whip-like structures are not only critically involved in specifying left-right sidedness during development, but they help move fluid and mucus around the brain, lung, eye and kidney, and are required for smell, sight and reproduction. Medical conditions, such as diabetes and obesity, have been linked to structural defects in the architecture or in function of cilia. Moreover, recent evidence indicates that cilia may have additional roles in controlling skeletal development and brain function.

Cilia on the outer surface of the embryo's underside, an area called the ventral node in mammals, exhibit a characteristic twirling movement that wafts chemical messengers over to the left side. This sets up a chemical concentration gradient that tells stem cells how and where to develop. When cilia function is impaired, organs like the heart, lungs, and liver may end up on the wrong side of the body.

When postdoctoral researcher and first author Isao Oishi, Ph.D., searched for genes in zebrafish involved in the left-right patterning of early embryos, he expected to find genes encoding components of cilia. “Instead we found a non-structural cilia gene that influences the function of the cilia, and that, among other things, caused problems with left/right patterning,” he says. He named the gene duboraya after the shape of the Japanese duboraya lantern, which fish with an inactivated version of the gene assume as they develop.

Oishi discovered that duboraya is required for formation of fully functional cilia in Kupffer's vesicle, the fish equivalent of the mammalian ventral node. Without duboraya, cilia were reduced to short stumps, unable to create the counterclockwise flow needed to establish left versus right. Duboraya protein, he found, is activated by frizzled-2, a member of the highly conserved Wnt signaling pathway, which orchestrates the activities of a vast number of cells during embryonic development.

Explains Belmonte: “We could show that genes that sense their external or internal environment communicate with structural genes that are responsible for making the cilia and tell them to beat this way or that way. What Isao discovered is a mechanism of how they relay information.”

Media Contact

Gina Kirchweger EurekAlert!

More Information:

http://www.salk.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Rocks with the oldest evidence yet of Earth’s magnetic field

The 3.7 billion-year-old rocks may extend the magnetic field’s age by 200 million years. Geologists at MIT and Oxford University have uncovered ancient rocks in Greenland that bear the oldest…

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Partners & Sponsors