Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In early embryos, cilia get the message across

23.10.2006
Having your heart in the right place usually means having it located on the left side of your body. But just how a perfectly symmetrical embryo settles on what's right and what's left has fascinated developmental biologists for a long time. The turning point came when the rotational beating of cilia, hair-like structures found on most cells, was identified as essential to the process.

Now, scientists at the Salk Institute for Biological Studies take a step back and illuminate the molecular process that regulates formation of cilia in early fish embryos. In a study published in a forthcoming issue of Nature Genetics, the Salk team, led by Juan Carlos Izpisúa Belmonte, Ph.D., a professor in the Gene Expression Laboratory, identified a novel factor that links early developmental signals with the function of cilia and their role in controlling left-right specification in zebrafish.

"When we altered the function of the gene duboraya, we saw problems with cilia formation, although the gene product itself is not a part of the structure. This opens up a new area of research," says Belmonte.

Cilia have been known to cell biologists for over a hundred years. Belmonte is convinced that these humble structures, which have until recently been ignored by physiologists and molecular biologists alike, are poised to take center stage in the field of biology. Explains Belmonte: "When you impair the function of cilia or the flow of cilia, you create substantial problems throughout the body."

... more about:
»Belmonte »Embryo »cilia »duboraya

These simple, whip-like structures are not only critically involved in specifying left-right sidedness during development, but they help move fluid and mucus around the brain, lung, eye and kidney, and are required for smell, sight and reproduction. Medical conditions, such as diabetes and obesity, have been linked to structural defects in the architecture or in function of cilia. Moreover, recent evidence indicates that cilia may have additional roles in controlling skeletal development and brain function.

Cilia on the outer surface of the embryo's underside, an area called the ventral node in mammals, exhibit a characteristic twirling movement that wafts chemical messengers over to the left side. This sets up a chemical concentration gradient that tells stem cells how and where to develop. When cilia function is impaired, organs like the heart, lungs, and liver may end up on the wrong side of the body.

When postdoctoral researcher and first author Isao Oishi, Ph.D., searched for genes in zebrafish involved in the left-right patterning of early embryos, he expected to find genes encoding components of cilia. "Instead we found a non-structural cilia gene that influences the function of the cilia, and that, among other things, caused problems with left/right patterning," he says. He named the gene duboraya after the shape of the Japanese duboraya lantern, which fish with an inactivated version of the gene assume as they develop.

Oishi discovered that duboraya is required for formation of fully functional cilia in Kupffer's vesicle, the fish equivalent of the mammalian ventral node. Without duboraya, cilia were reduced to short stumps, unable to create the counterclockwise flow needed to establish left versus right. Duboraya protein, he found, is activated by frizzled-2, a member of the highly conserved Wnt signaling pathway, which orchestrates the activities of a vast number of cells during embryonic development.

Explains Belmonte: "We could show that genes that sense their external or internal environment communicate with structural genes that are responsible for making the cilia and tell them to beat this way or that way. What Isao discovered is a mechanism of how they relay information."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Belmonte Embryo cilia duboraya

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>