Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In early embryos, cilia get the message across

23.10.2006
Having your heart in the right place usually means having it located on the left side of your body. But just how a perfectly symmetrical embryo settles on what's right and what's left has fascinated developmental biologists for a long time. The turning point came when the rotational beating of cilia, hair-like structures found on most cells, was identified as essential to the process.

Now, scientists at the Salk Institute for Biological Studies take a step back and illuminate the molecular process that regulates formation of cilia in early fish embryos. In a study published in a forthcoming issue of Nature Genetics, the Salk team, led by Juan Carlos Izpisúa Belmonte, Ph.D., a professor in the Gene Expression Laboratory, identified a novel factor that links early developmental signals with the function of cilia and their role in controlling left-right specification in zebrafish.

"When we altered the function of the gene duboraya, we saw problems with cilia formation, although the gene product itself is not a part of the structure. This opens up a new area of research," says Belmonte.

Cilia have been known to cell biologists for over a hundred years. Belmonte is convinced that these humble structures, which have until recently been ignored by physiologists and molecular biologists alike, are poised to take center stage in the field of biology. Explains Belmonte: "When you impair the function of cilia or the flow of cilia, you create substantial problems throughout the body."

... more about:
»Belmonte »Embryo »cilia »duboraya

These simple, whip-like structures are not only critically involved in specifying left-right sidedness during development, but they help move fluid and mucus around the brain, lung, eye and kidney, and are required for smell, sight and reproduction. Medical conditions, such as diabetes and obesity, have been linked to structural defects in the architecture or in function of cilia. Moreover, recent evidence indicates that cilia may have additional roles in controlling skeletal development and brain function.

Cilia on the outer surface of the embryo's underside, an area called the ventral node in mammals, exhibit a characteristic twirling movement that wafts chemical messengers over to the left side. This sets up a chemical concentration gradient that tells stem cells how and where to develop. When cilia function is impaired, organs like the heart, lungs, and liver may end up on the wrong side of the body.

When postdoctoral researcher and first author Isao Oishi, Ph.D., searched for genes in zebrafish involved in the left-right patterning of early embryos, he expected to find genes encoding components of cilia. "Instead we found a non-structural cilia gene that influences the function of the cilia, and that, among other things, caused problems with left/right patterning," he says. He named the gene duboraya after the shape of the Japanese duboraya lantern, which fish with an inactivated version of the gene assume as they develop.

Oishi discovered that duboraya is required for formation of fully functional cilia in Kupffer's vesicle, the fish equivalent of the mammalian ventral node. Without duboraya, cilia were reduced to short stumps, unable to create the counterclockwise flow needed to establish left versus right. Duboraya protein, he found, is activated by frizzled-2, a member of the highly conserved Wnt signaling pathway, which orchestrates the activities of a vast number of cells during embryonic development.

Explains Belmonte: "We could show that genes that sense their external or internal environment communicate with structural genes that are responsible for making the cilia and tell them to beat this way or that way. What Isao discovered is a mechanism of how they relay information."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Belmonte Embryo cilia duboraya

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>