Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In early embryos, cilia get the message across

23.10.2006
Having your heart in the right place usually means having it located on the left side of your body. But just how a perfectly symmetrical embryo settles on what's right and what's left has fascinated developmental biologists for a long time. The turning point came when the rotational beating of cilia, hair-like structures found on most cells, was identified as essential to the process.

Now, scientists at the Salk Institute for Biological Studies take a step back and illuminate the molecular process that regulates formation of cilia in early fish embryos. In a study published in a forthcoming issue of Nature Genetics, the Salk team, led by Juan Carlos Izpisúa Belmonte, Ph.D., a professor in the Gene Expression Laboratory, identified a novel factor that links early developmental signals with the function of cilia and their role in controlling left-right specification in zebrafish.

"When we altered the function of the gene duboraya, we saw problems with cilia formation, although the gene product itself is not a part of the structure. This opens up a new area of research," says Belmonte.

Cilia have been known to cell biologists for over a hundred years. Belmonte is convinced that these humble structures, which have until recently been ignored by physiologists and molecular biologists alike, are poised to take center stage in the field of biology. Explains Belmonte: "When you impair the function of cilia or the flow of cilia, you create substantial problems throughout the body."

... more about:
»Belmonte »Embryo »cilia »duboraya

These simple, whip-like structures are not only critically involved in specifying left-right sidedness during development, but they help move fluid and mucus around the brain, lung, eye and kidney, and are required for smell, sight and reproduction. Medical conditions, such as diabetes and obesity, have been linked to structural defects in the architecture or in function of cilia. Moreover, recent evidence indicates that cilia may have additional roles in controlling skeletal development and brain function.

Cilia on the outer surface of the embryo's underside, an area called the ventral node in mammals, exhibit a characteristic twirling movement that wafts chemical messengers over to the left side. This sets up a chemical concentration gradient that tells stem cells how and where to develop. When cilia function is impaired, organs like the heart, lungs, and liver may end up on the wrong side of the body.

When postdoctoral researcher and first author Isao Oishi, Ph.D., searched for genes in zebrafish involved in the left-right patterning of early embryos, he expected to find genes encoding components of cilia. "Instead we found a non-structural cilia gene that influences the function of the cilia, and that, among other things, caused problems with left/right patterning," he says. He named the gene duboraya after the shape of the Japanese duboraya lantern, which fish with an inactivated version of the gene assume as they develop.

Oishi discovered that duboraya is required for formation of fully functional cilia in Kupffer's vesicle, the fish equivalent of the mammalian ventral node. Without duboraya, cilia were reduced to short stumps, unable to create the counterclockwise flow needed to establish left versus right. Duboraya protein, he found, is activated by frizzled-2, a member of the highly conserved Wnt signaling pathway, which orchestrates the activities of a vast number of cells during embryonic development.

Explains Belmonte: "We could show that genes that sense their external or internal environment communicate with structural genes that are responsible for making the cilia and tell them to beat this way or that way. What Isao discovered is a mechanism of how they relay information."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Belmonte Embryo cilia duboraya

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>