Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene for neat repair of DNA discovered

25.01.2002


Researchers from the Erasmus University in Rotterdam have demonstrated that a gene helps in the neat repair of DNA. Without this gene the body would repair damaged DNA in a careless manner more often. This causes new damage, which can lead to cancer.


The careless repair of damaged DNA can cause mutations and can result in cancer. Cell biologists from the Erasmus University in Rotterdam studied the repair of double strand breaks. Such breaks can for example arise following radiotherapy.

The researchers simulated radiotherapy by specifically damaging the DNA of mouse cells. Mouse cells in which the gene Rad54 was first inactivated, more often chose a careless means of repairing the damaged DNA. In normal mouse cells no more than 60% of the repairs are done in a careless manner, whereas in cells with an inactivated Rad54 gene this figure was about 80%.

The results show that the Rad54 gene is important for repairing breaks in a neat manner and for preventing mutations. The scientists hope that their findings combined with future research will lead to improvements in the treatment of cancer. In the meantime the researchers are examining patients who overreact to radiotherapy. The idea is that physicians could for example give milder radiotherapy to patients who lack the Rad54 gene.



In another experiment the cell biologists examined the repair of cross-links. This type of damage arises after chemotherapy with, for example, melphalan, mitomycin C or cisplatin. The researchers inactivated the Snm1 gene in mice. After this the mice were given a small quantity of mitomycin.

Mice with a inactivated Snm1 gene died at a lower dose of mitomycin than mice with an intact Snm1 gene. This was probably because the mice with a inactivated Snm1 could not adequately repair the cross-links. Future research in patients who strongly react to chemotherapy must demonstrate whether this also involves a disrupted Snm1 gene.

DNA breaks can be repaired in three ways. The neat manner, homologous recombination, restores the break by copying information from an intact DNA molecule to the broken DNA molecule. The careless manner is called "sticking" recombination. This repair mechanism comes into play when the same piece of DNA is present slightly further along the same DNA molecule. The cell removes the undamaged intermediate piece of DNA. This costs less time than the neat manner but carries the risk that information will be lost. In the third manner, which is the simplest and most careless, the ends around a break are simply stuck together.

Michel Philippens | alphagalileo

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>