Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic repair mechanism clears the way for sealing DNA breaks

Scientists investigating an important DNA-repair enzyme now have a better picture of the final steps of a process that glues together, or ligates, the ends of DNA strands to restore the double helix.

The enzyme, DNA ligase, repairs the millions of DNA breaks generated during the normal course of a cell's life, for example, linking together the abundant DNA fragments formed during replication of the genetic material in dividing cells.

"Our study shows that DNA ligase switches from an open, extended shape to a closed, circular shape as it joins DNA strands together," says the study's senior author Tom Ellenberger, D.V.M, Ph.D., the Raymond H. Wittcoff Professor and head of the Department of Biochemistry and Molecular Biophysics at Washington University School of Medicine in St. Louis. "The ligase resembles a wristwatch that latches around the DNA ends that are being joined."

DNA is surprisingly reactive and under continuous assault from environmental toxins and reactive cellular metabolites. A means of repairing DNA damage is vital to maintaining the integrity of the genetic blueprint.

... more about:
»DNA »Ellenberger »PCNA »SAXS »ligase

When these repair processes go awry, cells can malfunction, die or become cancerous, so researchers would like to know how "DNA mechanics" do their jobs. DNA ligases are attractive targets for the chemotherapy of cancer and other diseases.

DNA ligase works in concert with another ring-shaped protein known as a sliding clamp. Sliding clamps, such as the human PCNA protein, are master regulators of DNA repair, providing docking sites that recruit repair enzymes to the site of damage.

"When ligase stacks against PCNA and encircles the DNA, we think this interaction ejects other repair proteins from PCNA," says Ellenberger. "In this role, ligase may serve as the final arbiter of DNA repair, certifying that the DNA is in pristine condition and ready for the final step of DNA end joining."

In this study of DNA ligase, published in the Oct. 20 issue of Molecular Cell, Ellenberger's research group teamed with scientists from The Scripps Research Institute (TSRI), the University of Maryland School of Medicine and Lawrence Berkeley National Laboratory (LBNL).

To visualize the complicated and dynamic structures of DNA ligase and PCNA, both separately and in a complex, Ellenberger and his group worked closely with LBNL scientists to take advantage of the intense X-rays and advanced technologies of the SIBYLS synchrotron beamline at the Berkeley lab Advanced Light Source.

The researchers used a combination of X-ray crystallography and small angle X-ray scattering (SAXS). They conducted their studies with a model organism called Sulfolobus solfataricus that has many of the same biochemical characteristics of multicelled organisms, including humans.

"We expected that DNA ligase would latch shut when bound to the ring-shaped PCNA protein," says Ellenberger. "However, the SAXS experiment clearly shows that ligase remains in an open conformation enabling other repair proteins to bind PCNA until the DNA is engaged and ligase snaps shut."

Co-author John Tainer, Ph.D., professor at LBNL and TSRI, says the results reveal for the first time how these proteins can dynamically assemble and change their shape to join DNA ends during replication and repair.

The closed conformation of DNA ligase bound to DNA was imaged in a separate study previously reported by Ellenberger's group. Ellenberger says that the challenge for the future is to study the molecular choreography of ligase, PCNA and DNA in the same experiment, which will require new methods of analyzing the SAXS data.

"The SAXS methods offer a powerful means of visualizing large proteins and protein complexes that are difficult or impossible to crystallize," says Ellenberger. "Imaging of complex processes will require a variety of tools that address different levels of biological organization from the molecular level to whole animals."

Research on biological imaging is one aspect of the University's BioMed21 initiative, which calls for converting knowledge of genetic mechanisms into practical applications.

Gwen Ericson | EurekAlert!
Further information:

Further reports about: DNA Ellenberger PCNA SAXS ligase

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>