Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic repair mechanism clears the way for sealing DNA breaks

23.10.2006
Scientists investigating an important DNA-repair enzyme now have a better picture of the final steps of a process that glues together, or ligates, the ends of DNA strands to restore the double helix.

The enzyme, DNA ligase, repairs the millions of DNA breaks generated during the normal course of a cell's life, for example, linking together the abundant DNA fragments formed during replication of the genetic material in dividing cells.

"Our study shows that DNA ligase switches from an open, extended shape to a closed, circular shape as it joins DNA strands together," says the study's senior author Tom Ellenberger, D.V.M, Ph.D., the Raymond H. Wittcoff Professor and head of the Department of Biochemistry and Molecular Biophysics at Washington University School of Medicine in St. Louis. "The ligase resembles a wristwatch that latches around the DNA ends that are being joined."

DNA is surprisingly reactive and under continuous assault from environmental toxins and reactive cellular metabolites. A means of repairing DNA damage is vital to maintaining the integrity of the genetic blueprint.

... more about:
»DNA »Ellenberger »PCNA »SAXS »ligase

When these repair processes go awry, cells can malfunction, die or become cancerous, so researchers would like to know how "DNA mechanics" do their jobs. DNA ligases are attractive targets for the chemotherapy of cancer and other diseases.

DNA ligase works in concert with another ring-shaped protein known as a sliding clamp. Sliding clamps, such as the human PCNA protein, are master regulators of DNA repair, providing docking sites that recruit repair enzymes to the site of damage.

"When ligase stacks against PCNA and encircles the DNA, we think this interaction ejects other repair proteins from PCNA," says Ellenberger. "In this role, ligase may serve as the final arbiter of DNA repair, certifying that the DNA is in pristine condition and ready for the final step of DNA end joining."

In this study of DNA ligase, published in the Oct. 20 issue of Molecular Cell, Ellenberger's research group teamed with scientists from The Scripps Research Institute (TSRI), the University of Maryland School of Medicine and Lawrence Berkeley National Laboratory (LBNL).

To visualize the complicated and dynamic structures of DNA ligase and PCNA, both separately and in a complex, Ellenberger and his group worked closely with LBNL scientists to take advantage of the intense X-rays and advanced technologies of the SIBYLS synchrotron beamline at the Berkeley lab Advanced Light Source.

The researchers used a combination of X-ray crystallography and small angle X-ray scattering (SAXS). They conducted their studies with a model organism called Sulfolobus solfataricus that has many of the same biochemical characteristics of multicelled organisms, including humans.

"We expected that DNA ligase would latch shut when bound to the ring-shaped PCNA protein," says Ellenberger. "However, the SAXS experiment clearly shows that ligase remains in an open conformation enabling other repair proteins to bind PCNA until the DNA is engaged and ligase snaps shut."

Co-author John Tainer, Ph.D., professor at LBNL and TSRI, says the results reveal for the first time how these proteins can dynamically assemble and change their shape to join DNA ends during replication and repair.

The closed conformation of DNA ligase bound to DNA was imaged in a separate study previously reported by Ellenberger's group. Ellenberger says that the challenge for the future is to study the molecular choreography of ligase, PCNA and DNA in the same experiment, which will require new methods of analyzing the SAXS data.

"The SAXS methods offer a powerful means of visualizing large proteins and protein complexes that are difficult or impossible to crystallize," says Ellenberger. "Imaging of complex processes will require a variety of tools that address different levels of biological organization from the molecular level to whole animals."

Research on biological imaging is one aspect of the University's BioMed21 initiative, which calls for converting knowledge of genetic mechanisms into practical applications.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: DNA Ellenberger PCNA SAXS ligase

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>