Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein important in blood clotting may also play a role in fertility

23.10.2006
A protein known to play a role in blood clotting and other cell functions is also critical for proper sperm formation in mice, according to researchers from the University of North Carolina at Chapel Hill School of Medicine.

Male mice missing both copies of the gene that produces the protein, called CIB1, have testes about half the normal size, have smaller numbers of the cells that give rise to sperm and produce no mature sperm at all, the researchers found. Female mice missing CIB1 were fertile, as were males missing only one copy of the CIB1 gene. Mice, like humans, have two copies of every gene, one from each parent.

The serendipitous discovery occurred when lead study author Dr. Weiping Yuan, intending to study CIB1's role in blood clotting, bred mice missing the CIB1 gene. All male mice bred without both copies of the gene were infertile, said Yuan, UNC research assistant professor of pharmacology.

CIB1 joins a growing list of fertility genes discovered during the course of mice studies of diseases such as cancer, diabetes and heart disease. In 2000, UNC researchers found several genes essential for male mouse fertility while studying how cells transport chloride, sodium and potassium, Yuan notes.

... more about:
»CIB1 »Yuan »blood »clotting »fertility »sperm

The results appear online in advance of print publication in the journal Molecular and Cell Biology. The study was funded by the National Institutes of Child Health and Human Development, part of the National Institutes of Health.

Earlier work by Yuan and his colleagues showed CIB1 helps control blood clotting in humans by keeping blood platelets from sticking together, acting as a natural anti-coagulant to prevent uncontrolled clotting of blood platelets that might lead to heart attacks and strokes.

From initial observations, the CIB1 defect in mice appears to disrupt sperm formation in its final stage, said Dr. Deborah O'Brien, study co-author and an associate professor of cell and developmental biology. "To make a sperm, you have to go from a fairly typical cell to one that has a very distinctive shape and half the number of chromosomes," O'Brien said. "The male mice missing CIB1 appear to have a problem very late in this process, when the cell differentiates into a sperm cell."

Further study would be needed to determine if the finding has implications for human infertility, O'Brien said. "If the protein has the same expression pattern and role in humans, then I would expect that a defect in this protein should have the same effect in humans. Some infertility could be due to a mutation in CIB1, but that's far down the road."

The discovery suggests that CIB1 is a major regulatory protein, active in cell function throughout the body, said Dr. Leslie Parise, senior author, professor of biochemistry and biophysics and pharmacology and chair of the department of biochemistry and biophysics. "This protein is known to regulate cell migration in other cells. Whether that ability is linked to this problem with spermatogenesis, we don't know," said Parise, who discovered CIB1 in 1997. "It will take further research to determine exactly how CIB1 regulates sperm formation."

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

Further reports about: CIB1 Yuan blood clotting fertility sperm

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>