Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein important in blood clotting may also play a role in fertility

23.10.2006
A protein known to play a role in blood clotting and other cell functions is also critical for proper sperm formation in mice, according to researchers from the University of North Carolina at Chapel Hill School of Medicine.

Male mice missing both copies of the gene that produces the protein, called CIB1, have testes about half the normal size, have smaller numbers of the cells that give rise to sperm and produce no mature sperm at all, the researchers found. Female mice missing CIB1 were fertile, as were males missing only one copy of the CIB1 gene. Mice, like humans, have two copies of every gene, one from each parent.

The serendipitous discovery occurred when lead study author Dr. Weiping Yuan, intending to study CIB1's role in blood clotting, bred mice missing the CIB1 gene. All male mice bred without both copies of the gene were infertile, said Yuan, UNC research assistant professor of pharmacology.

CIB1 joins a growing list of fertility genes discovered during the course of mice studies of diseases such as cancer, diabetes and heart disease. In 2000, UNC researchers found several genes essential for male mouse fertility while studying how cells transport chloride, sodium and potassium, Yuan notes.

... more about:
»CIB1 »Yuan »blood »clotting »fertility »sperm

The results appear online in advance of print publication in the journal Molecular and Cell Biology. The study was funded by the National Institutes of Child Health and Human Development, part of the National Institutes of Health.

Earlier work by Yuan and his colleagues showed CIB1 helps control blood clotting in humans by keeping blood platelets from sticking together, acting as a natural anti-coagulant to prevent uncontrolled clotting of blood platelets that might lead to heart attacks and strokes.

From initial observations, the CIB1 defect in mice appears to disrupt sperm formation in its final stage, said Dr. Deborah O'Brien, study co-author and an associate professor of cell and developmental biology. "To make a sperm, you have to go from a fairly typical cell to one that has a very distinctive shape and half the number of chromosomes," O'Brien said. "The male mice missing CIB1 appear to have a problem very late in this process, when the cell differentiates into a sperm cell."

Further study would be needed to determine if the finding has implications for human infertility, O'Brien said. "If the protein has the same expression pattern and role in humans, then I would expect that a defect in this protein should have the same effect in humans. Some infertility could be due to a mutation in CIB1, but that's far down the road."

The discovery suggests that CIB1 is a major regulatory protein, active in cell function throughout the body, said Dr. Leslie Parise, senior author, professor of biochemistry and biophysics and pharmacology and chair of the department of biochemistry and biophysics. "This protein is known to regulate cell migration in other cells. Whether that ability is linked to this problem with spermatogenesis, we don't know," said Parise, who discovered CIB1 in 1997. "It will take further research to determine exactly how CIB1 regulates sperm formation."

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

Further reports about: CIB1 Yuan blood clotting fertility sperm

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>