Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein important in blood clotting may also play a role in fertility

23.10.2006
A protein known to play a role in blood clotting and other cell functions is also critical for proper sperm formation in mice, according to researchers from the University of North Carolina at Chapel Hill School of Medicine.

Male mice missing both copies of the gene that produces the protein, called CIB1, have testes about half the normal size, have smaller numbers of the cells that give rise to sperm and produce no mature sperm at all, the researchers found. Female mice missing CIB1 were fertile, as were males missing only one copy of the CIB1 gene. Mice, like humans, have two copies of every gene, one from each parent.

The serendipitous discovery occurred when lead study author Dr. Weiping Yuan, intending to study CIB1's role in blood clotting, bred mice missing the CIB1 gene. All male mice bred without both copies of the gene were infertile, said Yuan, UNC research assistant professor of pharmacology.

CIB1 joins a growing list of fertility genes discovered during the course of mice studies of diseases such as cancer, diabetes and heart disease. In 2000, UNC researchers found several genes essential for male mouse fertility while studying how cells transport chloride, sodium and potassium, Yuan notes.

... more about:
»CIB1 »Yuan »blood »clotting »fertility »sperm

The results appear online in advance of print publication in the journal Molecular and Cell Biology. The study was funded by the National Institutes of Child Health and Human Development, part of the National Institutes of Health.

Earlier work by Yuan and his colleagues showed CIB1 helps control blood clotting in humans by keeping blood platelets from sticking together, acting as a natural anti-coagulant to prevent uncontrolled clotting of blood platelets that might lead to heart attacks and strokes.

From initial observations, the CIB1 defect in mice appears to disrupt sperm formation in its final stage, said Dr. Deborah O'Brien, study co-author and an associate professor of cell and developmental biology. "To make a sperm, you have to go from a fairly typical cell to one that has a very distinctive shape and half the number of chromosomes," O'Brien said. "The male mice missing CIB1 appear to have a problem very late in this process, when the cell differentiates into a sperm cell."

Further study would be needed to determine if the finding has implications for human infertility, O'Brien said. "If the protein has the same expression pattern and role in humans, then I would expect that a defect in this protein should have the same effect in humans. Some infertility could be due to a mutation in CIB1, but that's far down the road."

The discovery suggests that CIB1 is a major regulatory protein, active in cell function throughout the body, said Dr. Leslie Parise, senior author, professor of biochemistry and biophysics and pharmacology and chair of the department of biochemistry and biophysics. "This protein is known to regulate cell migration in other cells. Whether that ability is linked to this problem with spermatogenesis, we don't know," said Parise, who discovered CIB1 in 1997. "It will take further research to determine exactly how CIB1 regulates sperm formation."

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

Further reports about: CIB1 Yuan blood clotting fertility sperm

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>