Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical industry helped by small invisible tube

25.01.2002


Chemists at Utrecht University have developed a catalyst for fine chemistry. Tiny tubes of graphite are the carrier for this catalyst. PhD student Tijmen Ros successfully tested the catalyst with a standard reaction. Fellow researchers are now making the catalyst suitable for the production of cinnamon alcohol, an aromatic substance and flavouring.



According to the researchers from Utrecht, carbon nanofibres will replace active carbon as a carrier for catalysts. Carbon nanofibres are small tubes made from graphite. Several tubes together from a sponge-like material with a large internal surface. In the optimum case a gram of tubes has a surface area of 200 m2. The researchers fix the catalyst, for example the metal rhodium, to the surface. Many small metal particles can be placed on a large surface and that produces a good catalyst.

Tijmen Ros investigated how effective the catalyst was in the hydrogenation of cyclohexene. Hydrogenation is a widely used reaction in the chemical industry. An example of hydrogenation is the hardening of fat to make butter from vegetable or animal oils. Colourings, aromatic substances and flavourings are also made by means of hydrogenation. Cyclohexene is a simple molecule used by the researchers to test the catalyst.


The catalyst turned out to be so effective that the supply of new hydrogen and not the catalyst was the rate-limiting step in the hydrogenation process.

The researchers first of all tested the carbon nanofibres with pure metal particles and then with metal complexes. Fine chemistry often uses pure metal particles but would rather work with complexes, as these are better at steering the reaction. A complex bound to carbon nanofibres makes it possible to reuse the catalyst. Although the complex used by the chemists appeared to have lost its activity, the researchers expect to be able to make active complexes in the future.

In the meantime, the Utrecht research group is investigating the industrially important hydrogenation of cinnamon aldehyde into cinnamon alcohol, a substance which tastes and smells like cinnamon. Most large companies are waiting until the efficacy of carbon nanofibres as a carrier for catalysts has been proven. The researchers expect that this will be the case within ten years.

Michel Philippens | alphagalileo

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>