Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify switch for brain's natural anti-oxidant defense

23.10.2006
Finding suggests potential strategy for treating Alzheimer's, Parkinson's, other brain diseases

Scientists at Dana-Farber Cancer Institute report they have found how the brain turns on a system designed to protect its nerve cells from toxic "free radicals," a waste product of cell metabolism that has been implicated in some degenerative brain diseases, heart attacks, strokes, cancer, and aging.

Potentially, the researchers say, it may be possible to use drugs to strengthen the anti-oxidant system in the brain as a treatment for presently incurable diseases like Parkinson's, Huntington's, and Alzheimer's and possibly other maladies.

Dana-Farber's Bruce Spiegelman, PhD, and colleagues, using a mouse model, discovered that a regulatory protein, PGC-1a, switches on the anti-oxidant system when free radicals, or reactive oxygen species, begin to accumulate. It's believed that some brain diseases involve a failure of the protective system, and the authors report that turning on PGC-1a to high levels in cultured cells protected them against nerve toxins. The findings will be reported in the Oct. 20 issue of the journal Cell.

"This could have broad implications for the many diseases in which reactive oxygen species are implicated," said Spiegelman. Anti-oxidant supplements have been used with some success in patients with neurodegenerative diseases, but Spiegelman noted that the process sparked by PGC-1a "is how nature does it."

Researchers currently are screening drugs in search of compounds that could spur PGC-1a expression in brain cells, as well as exploring whether any harmful side effects might result. PGC-1a is a transcriptional co-activator discovered in Spiegelman's Dana-Farber laboratory in 1998. It has subsequently been found to play a master regulatory role in metabolic processes and muscle function, as well as being a culprit in diabetes.

The report establishes for the first time that PGC-1a both drives the mitochondria to make energy and triggers the cleanup of toxic free radicals that accumulate in the cell as byproducts. As excess free radicals build up, their toxicity places the cell under "oxidative stress," which prompts the cell to produce more PGC-1a, which in turn spurs the anti-oxidant defenses into action.

"With this mechanism, the body can speed up mitochondrial formation and at the same time suppress the creation of reactive oxygen species, which are known to be terribly damaging to the cell," explains Spiegelman, who is also a professor of cell biology at Harvard Medical School. In this respect, the cell could be compared to a self-cleaning oven -- but one that becomes less efficient with age and in certain diseases.

Therefore, the new finding of a specific regulator of the body's own anti-oxidant system could lead to more-effective treatments for a number of diseases, and might even retard some of the effects of aging, the researchers say.

In previous experiments, Spiegelman and others had bred mice that lacked the PCG-1a gene. As would be expected, the absence of PCG-1a caused the mice to have abnormalities in their metabolism -- they had less exercise capacity and were extremely sensitive to cold. But what the scientists hadn't predicted was that the mice had neurodegenerative lesions in their brains and behaved abnormally: This was a clue that without PGC-1a, the cells' "self-cleaning" mechanism wasn't activated properly, leaving the mice more vulnerable to brain damage from renegade free radicals.

In the current research, Spiegelman and his colleagues exposed normal mice and rodents lacking PGC-1a to a nerve toxin that accelerates the production of free radicals. Mice without PGC-1a suffered more brain damage because they couldn't turn on their anti-oxidant defenses.

Finally, to investigate whether increasing PGC-1a activity in the brain would protect against oxidative stress, the scientists caused mouse brain cells and human brain cells in the laboratory to make 40 times as much PCG-1a as normal. They exposed the cells to increasing amounts of paraquat or hydrogen peroxide, chemicals that cause oxidative stress and cell damage. The result: many more brain cells survived the assault than did cells without the extra PGC-1a activity to augment their defenses.

Because PGC-1a has now been shown both to rev up energy production in the mitochondria and to suppress the resulting free radicals, "this is an almost ideal protein to control or limit the damage seen in neurodegenerative diseases that have been associated with defective mitochondrial function," the authors wrote. As a result, finding drugs that increase PGC-1a in the brain "could represent a new mode of therapy for a set of diseases that are both common and have only marginal therapies at this moment."

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>